import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
class BathSalt1DaedalusPhi3Model(AutoModelForSeq2SeqLM): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
def forward(self, input_ids, attention_mask, labels): | |
outputs = self.model(input_ids, attention_mask=attention_mask, labels=labels) | |
return outputs |