--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - Wer: 0.0826 - Cer: 0.0324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0085 | 1.0 | 274 | 0.0059 | 0.0755 | 0.0293 | | 0.0067 | 2.0 | 548 | 0.0058 | 0.0789 | 0.0305 | | 0.0062 | 3.0 | 822 | 0.0059 | 0.0760 | 0.0281 | | 0.0033 | 4.0 | 1096 | 0.0061 | 0.0769 | 0.0293 | | 0.0024 | 5.0 | 1370 | 0.0063 | 0.0746 | 0.0285 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0