--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0191 - Wer: 0.1462 - Cer: 0.0494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0148 | 1.0 | 250 | 0.0146 | 0.1685 | 0.0520 | | 0.0109 | 2.0 | 500 | 0.0144 | 0.1765 | 0.0595 | | 0.0082 | 3.0 | 750 | 0.0152 | 0.1634 | 0.0542 | | 0.0065 | 4.0 | 1000 | 0.0155 | 0.1593 | 0.0505 | | 0.0033 | 5.0 | 1250 | 0.0181 | 0.1644 | 0.0571 | | 0.0025 | 6.0 | 1500 | 0.0182 | 0.1558 | 0.0533 | | 0.0024 | 7.0 | 1750 | 0.0180 | 0.1544 | 0.0492 | | 0.0014 | 8.0 | 2000 | 0.0190 | 0.1461 | 0.0508 | | 0.001 | 9.0 | 2250 | 0.0196 | 0.1430 | 0.0479 | | 0.0006 | 10.0 | 2500 | 0.0198 | 0.1467 | 0.0497 | | 0.0005 | 11.0 | 2750 | 0.0198 | 0.1531 | 0.0503 | | 0.0004 | 12.0 | 3000 | 0.0197 | 0.1446 | 0.0473 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0