--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0148 - Wer: 0.1025 - Cer: 0.0366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0104 | 1.0 | 313 | 0.0092 | 0.1131 | 0.0389 | | 0.009 | 2.0 | 626 | 0.0091 | 0.1104 | 0.0405 | | 0.006 | 3.0 | 939 | 0.0093 | 0.1046 | 0.0371 | | 0.0056 | 4.0 | 1252 | 0.0097 | 0.1061 | 0.0369 | | 0.002 | 5.0 | 1565 | 0.0110 | 0.1061 | 0.0375 | | 0.0021 | 6.0 | 1878 | 0.0110 | 0.1052 | 0.0464 | | 0.0012 | 7.0 | 2191 | 0.0117 | 0.1019 | 0.0353 | | 0.0008 | 8.0 | 2504 | 0.0126 | 0.1071 | 0.0457 | | 0.0002 | 9.0 | 2817 | 0.0129 | 0.1019 | 0.0372 | | 0.0002 | 10.0 | 3130 | 0.0140 | 0.1056 | 0.0380 | | 0.0001 | 11.0 | 3443 | 0.0138 | 0.1003 | 0.0337 | | 0.0001 | 12.0 | 3756 | 0.0142 | 0.0977 | 0.0327 | | 0.0 | 13.0 | 4069 | 0.0146 | 0.1014 | 0.0346 | | 0.0 | 14.0 | 4382 | 0.0152 | 0.0988 | 0.0340 | | 0.0 | 15.0 | 4695 | 0.0164 | 0.1040 | 0.0390 | | 0.0 | 16.0 | 5008 | 0.0161 | 0.1005 | 0.0336 | | 0.0 | 17.0 | 5321 | 0.0165 | 0.1005 | 0.0330 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0