File size: 2,758 Bytes
07d9105 98d5bb0 07d9105 7933ab1 07d9105 bf3ec06 07d9105 98d5bb0 07d9105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny AR - BH
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0148
- Wer: 0.1025
- Cer: 0.0366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0104 | 1.0 | 313 | 0.0092 | 0.1131 | 0.0389 |
| 0.009 | 2.0 | 626 | 0.0091 | 0.1104 | 0.0405 |
| 0.006 | 3.0 | 939 | 0.0093 | 0.1046 | 0.0371 |
| 0.0056 | 4.0 | 1252 | 0.0097 | 0.1061 | 0.0369 |
| 0.002 | 5.0 | 1565 | 0.0110 | 0.1061 | 0.0375 |
| 0.0021 | 6.0 | 1878 | 0.0110 | 0.1052 | 0.0464 |
| 0.0012 | 7.0 | 2191 | 0.0117 | 0.1019 | 0.0353 |
| 0.0008 | 8.0 | 2504 | 0.0126 | 0.1071 | 0.0457 |
| 0.0002 | 9.0 | 2817 | 0.0129 | 0.1019 | 0.0372 |
| 0.0002 | 10.0 | 3130 | 0.0140 | 0.1056 | 0.0380 |
| 0.0001 | 11.0 | 3443 | 0.0138 | 0.1003 | 0.0337 |
| 0.0001 | 12.0 | 3756 | 0.0142 | 0.0977 | 0.0327 |
| 0.0 | 13.0 | 4069 | 0.0146 | 0.1014 | 0.0346 |
| 0.0 | 14.0 | 4382 | 0.0152 | 0.0988 | 0.0340 |
| 0.0 | 15.0 | 4695 | 0.0164 | 0.1040 | 0.0390 |
| 0.0 | 16.0 | 5008 | 0.0161 | 0.1005 | 0.0336 |
| 0.0 | 17.0 | 5321 | 0.0165 | 0.1005 | 0.0330 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|