File size: 2,758 Bytes
07d9105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d5bb0
 
 
07d9105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7933ab1
07d9105
 
 
 
 
 
 
 
bf3ec06
07d9105
 
 
 
 
 
98d5bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07d9105
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper tiny AR - BH

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0148
- Wer: 0.1025
- Cer: 0.0366

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0104        | 1.0   | 313  | 0.0092          | 0.1131 | 0.0389 |
| 0.009         | 2.0   | 626  | 0.0091          | 0.1104 | 0.0405 |
| 0.006         | 3.0   | 939  | 0.0093          | 0.1046 | 0.0371 |
| 0.0056        | 4.0   | 1252 | 0.0097          | 0.1061 | 0.0369 |
| 0.002         | 5.0   | 1565 | 0.0110          | 0.1061 | 0.0375 |
| 0.0021        | 6.0   | 1878 | 0.0110          | 0.1052 | 0.0464 |
| 0.0012        | 7.0   | 2191 | 0.0117          | 0.1019 | 0.0353 |
| 0.0008        | 8.0   | 2504 | 0.0126          | 0.1071 | 0.0457 |
| 0.0002        | 9.0   | 2817 | 0.0129          | 0.1019 | 0.0372 |
| 0.0002        | 10.0  | 3130 | 0.0140          | 0.1056 | 0.0380 |
| 0.0001        | 11.0  | 3443 | 0.0138          | 0.1003 | 0.0337 |
| 0.0001        | 12.0  | 3756 | 0.0142          | 0.0977 | 0.0327 |
| 0.0           | 13.0  | 4069 | 0.0146          | 0.1014 | 0.0346 |
| 0.0           | 14.0  | 4382 | 0.0152          | 0.0988 | 0.0340 |
| 0.0           | 15.0  | 4695 | 0.0164          | 0.1040 | 0.0390 |
| 0.0           | 16.0  | 5008 | 0.0161          | 0.1005 | 0.0336 |
| 0.0           | 17.0  | 5321 | 0.0165          | 0.1005 | 0.0330 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0