File size: 2,068 Bytes
07d9105 5f12254 07d9105 2c847c0 07d9105 23e0f6f 07d9105 374efe4 07d9105 5f12254 07d9105 8d00671 5f12254 07d9105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny AR - BH
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the quran-ayat-speech-to-text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0060
- Wer: 0.0802
- Cer: 0.0316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0065 | 1.0 | 391 | 0.0057 | 0.0744 | 0.0290 |
| 0.0054 | 2.0 | 782 | 0.0056 | 0.0733 | 0.0285 |
| 0.0046 | 3.0 | 1173 | 0.0057 | 0.0782 | 0.0298 |
| 0.0033 | 4.0 | 1564 | 0.0058 | 0.0746 | 0.0280 |
| 0.0046 | 5.0 | 1955 | 0.0061 | 0.0726 | 0.0280 |
| 0.0032 | 6.0 | 2346 | 0.0064 | 0.0726 | 0.0278 |
| 0.0013 | 7.0 | 2737 | 0.0067 | 0.0740 | 0.0296 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|