Adversarial Robustness
Bai-YT commited on
Commit
a4d9de4
·
verified ·
1 Parent(s): 500386e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -15
README.md CHANGED
@@ -10,34 +10,43 @@ tags:
10
 
11
  # MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers
12
 
13
- This is the official model repository of the preprint paper \
14
  *[MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers](https://arxiv.org/abs/2402.02263)* \
15
- by [Yatong Bai](https://bai-yt.github.io), [Mo Zhou](https://cdluminate.github.io), [Vishal M. Patel](https://engineering.jhu.edu/faculty/vishal-patel), and [Somayeh Sojoudi](https://www2.eecs.berkeley.edu/Faculty/Homepages/sojoudi.html).
 
 
 
 
 
16
 
17
  **TL;DR:** MixedNUTS balances clean data classification accuracy and adversarial robustness without additional training
18
  via a mixed classifier with nonlinear base model logit transformations.
19
 
 
 
 
 
 
 
 
20
  Here, we provide the download links to the standard base classifiers used in the main results.
21
- | Dataset | Link |
 
22
  |-----------|-------|
23
- | CIFAR-10 | [Download](https://huggingface.co/Bai-YT/MixedNUTS/resolve/main/cifar10_std_rn152.pt?download=true) |
24
  | CIFAR-100 | [Download](https://huggingface.co/Bai-YT/MixedNUTS/resolve/main/cifar100_std_rn152.pt?download=true) |
25
- | ImageNet | [Download](https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt) |
26
-
27
- For code and detailed usage, please refer to our [GitHub repository](https://github.com/Bai-YT/MixedNUTS).
28
 
29
- <center>
30
- <img src=“main_figure.png” alt=“MixedNUTS Results” title=“Results” width=“800"/>
31
- </center>
32
 
33
 
34
- #### Citing our work (BibTeX)
35
 
36
  ```bibtex
37
  @article{MixedNUTS,
38
- title={MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers},
39
- author={Bai, Yatong and Zhou, Mo and Patel, Vishal M. and Sojoudi, Somayeh},
40
- journal={arXiv preprint arXiv:2402.02263},
41
- year={2024}
42
  }
43
  ```
 
10
 
11
  # MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers
12
 
13
+ This is the official **model** repository of the preprint paper \
14
  *[MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers](https://arxiv.org/abs/2402.02263)* \
15
+ by [Yatong Bai](https://bai-yt.github.io), [Mo Zhou](https://cdluminate.github.io), [Vishal M. Patel](https://engineering.jhu.edu/faculty/vishal-patel),
16
+ and [Somayeh Sojoudi](https://www2.eecs.berkeley.edu/Faculty/Homepages/sojoudi.html) in Transactions on Machine Learning Research.
17
+
18
+ <center>
19
+ <img src="main_figure.png" alt="MixedNUTS Results" title="Results" width="800"/>
20
+ </center>
21
 
22
  **TL;DR:** MixedNUTS balances clean data classification accuracy and adversarial robustness without additional training
23
  via a mixed classifier with nonlinear base model logit transformations.
24
 
25
+ ## Model Checkpoints
26
+
27
+ MixedNUTS is a training-free method that has no additional neural network components other than its base classifiers.
28
+
29
+ All robust base classifiers used in the main results of our paper are available on [RobustBench](https://robustbench.github.io)
30
+ and can be downloaded automatically via the RobustBench API.
31
+
32
  Here, we provide the download links to the standard base classifiers used in the main results.
33
+
34
+ | Dataset | Link |
35
  |-----------|-------|
36
+ | CIFAR-10 | [Download](https://huggingface.co/Bai-YT/MixedNUTS/resolve/main/cifar10_std_rn152.pt?download=true) |
37
  | CIFAR-100 | [Download](https://huggingface.co/Bai-YT/MixedNUTS/resolve/main/cifar100_std_rn152.pt?download=true) |
38
+ | ImageNet | [Download](https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt) |
 
 
39
 
40
+ **For code and detailed usage, please refer to our [GitHub repository](https://github.com/Bai-YT/MixedNUTS).**
 
 
41
 
42
 
43
+ ## Citing our work (BibTeX)
44
 
45
  ```bibtex
46
  @article{MixedNUTS,
47
+ title={MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers},
48
+ author={Bai, Yatong and Zhou, Mo and Patel, Vishal M. and Sojoudi, Somayeh},
49
+ journal={Transactions on Machine Learning Research},
50
+ year={2024}
51
  }
52
  ```