File size: 1,712 Bytes
			
			4d0a75e b256333 4d0a75e b256333 4d0a75e b256333 4d0a75e b256333 4d0a75e b256333 4d0a75e  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59  | 
								---
base_model: unsloth/Llama-3.1-Nemotron-Nano-4B-v1.1
library_name: transformers
model_name: 4b-testlora
tags:
- generated_from_trainer
- sft
- unsloth
- trl
licence: license
---
# Model Card for 4b-testlora
This model is a fine-tuned version of [unsloth/Llama-3.1-Nemotron-Nano-4B-v1.1](https://huggingface.co/unsloth/Llama-3.1-Nemotron-Nano-4B-v1.1).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Ba2han/4b-testlora", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/batuhan409/huggingface/runs/5l542jo2) 
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.4
- Pytorch: 2.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |