--- tags: - image-classification library_name: wildlife-datasets license: cc-by-nc-4.0 --- # Model card for MegaDescriptor-EfficientNetB3 A EfficientNetB3 based image feature model. Supervisely pre-trained on animal re-identification datasets. ## Model Details - **Model Type:** Animal re-identification / feature backbone - **Model Stats:** - Params (M): 12.2 - GMACs: 1.6 - Activations (M): 21.5 - Image size: 288 x 288 - **Papers:** - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946 ## Model Usage ### Image Embeddings ```python import timm import torch import torchvision.transforms as T from PIL import Image from urllib.request import urlopen model = timm.create_model("hf-hub:BVRA/MegaDescriptor-EfficientNetB3", pretrained=True) model = model.eval() transforms = T.Compose([T.Resize(288), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{vcermak2024wildlifedatasets, title={WildlifeDatasets: An open-source toolkit for animal re-identification}, author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, pages={5953--5963}, year={2024} } ```