DiCoW_v3_2 / layers.py
Lakoc's picture
Upload DiCoWForConditionalGeneration
c00ff2c verified
import torch
from torch import nn
class CustomLinear(nn.Linear):
def __init__(self, *args, init_eye_val=0.0, is_diagonal=False, **kwargs):
super().__init__(*args, **kwargs)
self.init_eye_val = init_eye_val
class CustomDiagonalLinear(nn.Module):
def __init__(self, d_model, bias=True, init_eye_val=0.0):
super().__init__()
self.init_eye_val = init_eye_val
self.weight = nn.Parameter(torch.full((d_model,), init_eye_val))
self.bias = nn.Parameter(torch.zeros(d_model)) if bias else None
def forward(self, input):
out = input * self.weight
if self.bias is not None:
out += self.bias
return out
class Gate(nn.Module):
def __init__(self, items, init_val=0.0):
super().__init__()
self.init_val = init_val
self.gate = nn.Parameter(torch.full((items,), init_val))
def forward(self, input, dim):
if input.ndim != 4:
raise ValueError('input must be a 4D tensor')
if not (0 <= dim <= 3):
raise ValueError('dim must be 0, 1, 2, or 3')
shape = [1] * 4
shape[dim] = -1
return input * self.gate.view(*shape)