File size: 17,228 Bytes
c00ff2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4d2de3
c00ff2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torch.utils.checkpoint
import torch.utils.checkpoint
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.models.speech_encoder_decoder.modeling_speech_encoder_decoder import (
    shift_tokens_right,
)
from transformers.models.whisper.modeling_whisper import (
    WhisperEncoder,
)
from transformers.models.whisper.modeling_whisper import (
    WhisperForConditionalGeneration,
    shift_tokens_right,
    WhisperModel,
)
from transformers.models.whisper.modeling_whisper import sinusoids
from transformers.utils import logging

from .config import Seq2SeqLMOutputLosses, Seq2SeqModelOutputLogit, DiCoWConfig
from .encoder import DiCoWEncoder
from .FDDT import FDDT
from .layers import CustomLinear, CustomDiagonalLinear, Gate
from .generation import DiCoWGenerationMixin

logging.set_verbosity_debug()
logger = logging.get_logger("transformers")


class DiCoW(WhisperModel):
    def __init__(self, config: DiCoWConfig):
        super().__init__(config)
        self.encoder = DiCoWEncoder(config)

    def forward(
            self,
            input_features: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            decoder_input_ids: Optional[torch.LongTensor] = None,
            decoder_attention_mask: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            decoder_head_mask: Optional[torch.Tensor] = None,
            cross_attn_head_mask: Optional[torch.Tensor] = None,
            encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
            decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            stno_mask: Optional[torch.FloatTensor] = None,
            per_group_sizes: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutputLosses]:
        r"""
        Returns:

        Example:
         ```python
         >>> import torch
         >>> from transformers import AutoFeatureExtractor, WhisperModel
         >>> from datasets import load_dataset

         >>> model = WhisperModel.from_pretrained("openai/whisper-base")
         >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
         >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
         >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
         >>> input_features = inputs.input_features
         >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
         >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
         >>> list(last_hidden_state.shape)
         [1, 2, 512]
         ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            input_features = self._mask_input_features(input_features, attention_mask=attention_mask)

            encoder_outputs = self.encoder(
                input_features,
                output_attentions=output_attentions,
                output_hidden_states=True,
                head_mask=head_mask,
                return_dict=return_dict,
                stno_mask=stno_mask,
                per_group_sizes=per_group_sizes
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        # elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
        #     raise ValueError("encoder_outputs should be of type BaseModelOutput when return_dict=True.")

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs.hidden_states[-1],
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            position_ids=decoder_position_ids,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutputLogit(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.hidden_states[-1],
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            encoder_logits=encoder_outputs.logits,
        )


class DiCoWForConditionalGeneration(DiCoWGenerationMixin, WhisperForConditionalGeneration):
    config_class = DiCoWConfig

    def __init__(self, config: DiCoWConfig):
        super().__init__(config)
        self.model = DiCoW(config)
        self.encoder_logits = None
        self.tokenizer = None
        self.vad_seek_callback = None
        self.stno_mask = None
        self.stno_mask_seek = None

    # We need this setter as we can't pass a function/method as a config argument.
    # JSON serialization fails at that point.
    def set_vad_seek_callback(self, vad_seek_callback):
        self.vad_seek_callback = vad_seek_callback

    def set_tokenizer(self, tokenizer):
        self.tokenizer = tokenizer

    def _init_weights(self, module):
        std = self.config.init_std
        fddt_init = self.config.fddt_init
        if isinstance(module, CustomLinear):
            with torch.no_grad():
                if fddt_init == 'random':
                    module.weight.data.normal_(mean=0.0, std=std)
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=std)
                elif fddt_init == 'non-disturbing':
                    module.weight.data = torch.eye(*module.weight.shape).data
                    if module.bias is not None:
                        module.bias.data.zero_()
                elif fddt_init == 'disparagement':
                    eye = torch.eye(*module.weight.shape)
                    eye *= module.init_eye_val
                    module.weight.data = eye.data
                    if module.bias is not None:
                        module.bias.data.zero_()
        elif isinstance(module, CustomDiagonalLinear):
            with torch.no_grad():
                if fddt_init == 'random':
                    module.weight.data.normal_(mean=0.0, std=std)
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=std)
                elif fddt_init == 'non-disturbing':
                    module.weight.data = torch.ones_like(module.weight.data).data
                    if module.bias is not None:
                        module.bias.data.zero_()
                elif fddt_init == 'disparagement':
                    module.weight.data = module.init_eye_val * torch.ones_like(module.weight.data).data
                    if module.bias is not None:
                        module.bias.data.zero_()
        elif isinstance(module, FDDT):
            if module.bias_only:
                if fddt_init == 'random':
                    module.target_linear.data.normal_(mean=0.0, std=std)
                    module.non_target_linear.data.normal_(mean=0.0, std=std)
                    module.overlap_linear.data.normal_(mean=0.0, std=std)
                    module.silence_linear.data.normal_(mean=0.0, std=std)
                    module.scb.data.normal_(mean=0.0, std=std)
                else:
                    module.target_linear.data.zero_()
                    module.non_target_linear.data.zero_()
                    module.overlap_linear.data.zero_()
                    module.silence_linear.data.zero_()
                    module.scb.data.zero_()
        elif isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, WhisperEncoder):
            with torch.no_grad():
                embed_positions = module.embed_positions.weight
                embed_positions.copy_(sinusoids(*embed_positions.shape))
        elif isinstance(module, nn.LayerNorm):
            module.reset_parameters()
        elif isinstance(module, nn.MultiheadAttention):
            module._reset_parameters()
        elif isinstance(module, nn.ConvTranspose1d):
            module.reset_parameters()
        elif isinstance(module, Gate):
            module.gate.data = module.init_val * torch.ones_like(module.gate.data).data

    def forward(
            self,
            input_features: Optional[torch.FloatTensor] = None,
            stno_mask: Optional[torch.FloatTensor] = None,
            per_group_sizes: Optional[torch.LongTensor] = None,
            attention_mask_enc: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            decoder_input_ids: Optional[torch.LongTensor] = None,
            decoder_attention_mask: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            decoder_head_mask: Optional[torch.Tensor] = None,
            cross_attn_head_mask: Optional[torch.Tensor] = None,
            encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
            decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            upp_labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            is_valid: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
            or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
            only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> import torch
        >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
        >>> input_features = inputs.input_features

        >>> generated_ids = model.generate(inputs=input_features)

        >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        >>> transcription
        ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_features,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            decoder_inputs_embeds=decoder_inputs_embeds,
            decoder_position_ids=decoder_position_ids,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            stno_mask=stno_mask,
            per_group_sizes=per_group_sizes
        )

        dec_lm_logits = self.proj_out(outputs.last_hidden_state)
        enc_lm_logits = outputs.encoder_logits

        loss = None
        ctc_loss = 0

        # remove fake inputs from labels and logits given per group sizes
        if is_valid is not None:
            if self.config.ctc_weight > 0.0:
                enc_lm_logits = enc_lm_logits[is_valid]
            dec_lm_logits = dec_lm_logits[is_valid]
            labels = labels[is_valid]
            upp_labels = upp_labels[is_valid]

        if labels is not None and self.config.ctc_weight > 0.0:
            enc_labels = labels.clone()
            for token in self.tokenizer.prefix_tokens:
                if (enc_labels[:, 0] == token).all():
                    enc_labels = enc_labels[:, 1:]
            enc_labels[enc_labels == self.config.eos_token_id] = -100

            ctc_loss = self.get_encoder().get_loss(enc_lm_logits, enc_labels)

        if labels is not None:
            loss_fct = CrossEntropyLoss(reduction='none')
            # move labels to correct device to enable PP
            labels = labels.to(dec_lm_logits.device)
            dec_loss1 = loss_fct(dec_lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1))
            dec_loss2 = loss_fct(dec_lm_logits.view(-1, self.config.vocab_size), upp_labels.reshape(-1))
            dec_loss = torch.hstack((dec_loss1[..., None], dec_loss2[..., None])).min(dim=-1).values.mean()
            loss = (1 - self.config.ctc_weight) * dec_loss + self.config.ctc_weight * ctc_loss

        if not return_dict:
            output = (dec_lm_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutputLosses(
            loss=loss,
            logits=dec_lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            encoder_logits=enc_lm_logits,
        )

    def _get_feat_extract_output_lengths(self, attention_mask: torch.Tensor) -> torch.Tensor:
        return (self.model.encoder._get_feat_extract_output_lengths(attention_mask) / 4).ceil()

    def freeze_except(self, prefixes_to_preheat):
        for name, param in self.named_parameters():
            param.requires_grad = False
            for prefix in prefixes_to_preheat:
                if name.startswith(prefix):
                    param.requires_grad = True

    def suppress_interactions(self):
        """This method suppress final projection in CoAttention blocks to let the original information flow through"""
        for name, param in self.named_parameters():
            if "interaction" in name and "cat_proj" in name:
                with torch.no_grad():
                    if "bias" in name:
                        param[:] = 0.
                    else:
                        param[:] *= 0.001