File size: 86,895 Bytes
c00ff2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
import copy
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing import Iterator
import warnings

import numpy as np
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from torch import nn
from torch.nn.utils.rnn import pad_sequence

from decimal import Decimal, ROUND_HALF_UP

from transformers import LogitsProcessorList, SuppressTokensLogitsProcessor, \
    SuppressTokensAtBeginLogitsProcessor
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.configuration_utils import GenerationMode
from transformers.generation.logits_process import (
    LogitsProcessorList,
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor, )
from transformers.generation.logits_process import WhisperNoSpeechDetection
from transformers.generation.stopping_criteria import (
    StoppingCriteriaList,
)
from transformers.generation.utils import GenerateBeamOutput, BeamScorer, GenerateBeamDecoderOnlyOutput, \
    stack_model_outputs, GenerateBeamEncoderDecoderOutput, _split_model_inputs, GenerateNonBeamOutput, \
    GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.whisper.modeling_whisper import (
    WhisperForConditionalGeneration,
)
from transformers.models.whisper.generation_whisper import _get_attr_from_logit_processors, _pad_to_max_length
from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE
from transformers.utils import logging

from .utils import WhisperTimeStampLogitsProcessorCustom
from .decoding import CTCRescorerLogitsProcessor, LogSoftmaxProcessor

logging.set_verbosity_debug()
logger = logging.get_logger("transformers")


class DiCoWGenerationMixin(WhisperForConditionalGeneration):
    def _prepare_encoder_decoder_kwargs_for_generation(
            self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name, generation_config,
    ) -> Dict[str, Any]:
        # self.encoder_output_lens = self._get_feat_extract_output_lengths(
        #     model_kwargs['attention_mask_enc'].sum(dim=1)
        # ).int()
        generation_config.output_hidden_states = True

        # pylint: disable=no-memberva
        model_kwargs = super()._prepare_encoder_decoder_kwargs_for_generation(
            inputs_tensor, model_kwargs, model_input_name, generation_config
        )
        self.encoder_logits = model_kwargs["encoder_outputs"].logits

        return model_kwargs

    @staticmethod
    def _expand_inputs_for_generation(
            expand_size: int = 1,
            is_encoder_decoder: bool = False,
            input_ids: Optional[torch.LongTensor] = None,
            **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key != "loss":
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
            if "hidden_states" in model_kwargs["encoder_outputs"]:
                model_kwargs["encoder_outputs"]["hidden_states"] = tuple(
                    hidden_state.repeat_interleave(expand_size, dim=0) for hidden_state in
                    model_kwargs["encoder_outputs"]["hidden_states"]
                )

        return input_ids, model_kwargs

    def generate(
            self,
            input_features: Optional[torch.Tensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            logits_processor: Optional[LogitsProcessorList] = None,
            stopping_criteria: Optional[StoppingCriteriaList] = None,
            prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
            synced_gpus: bool = False,
            return_timestamps: Optional[bool] = None,
            task: Optional[str] = None,
            language: Optional[str] = None,
            is_multilingual: Optional[bool] = None,
            prompt_ids: Optional[torch.Tensor] = None,
            prompt_condition_type: Optional[str] = None,  # first-segment, all-segments
            condition_on_prev_tokens: Optional[bool] = None,
            temperature: Optional[Union[float, Tuple[float, ...]]] = None,
            compression_ratio_threshold: Optional[float] = None,
            logprob_threshold: Optional[float] = None,
            no_speech_threshold: Optional[float] = None,
            num_segment_frames: Optional[int] = None,
            attention_mask: Optional[torch.Tensor] = None,
            time_precision: float = 0.02,
            return_token_timestamps: Optional[bool] = None,
            return_segments: bool = False,
            return_dict_in_generate: Optional[bool] = None,
            assistant_model: Optional["PreTrainedModel"] = None,
            **kwargs,
    ):
        if condition_on_prev_tokens:
            raise NotImplementedError("Current version does not support conditioning")

        gen_c, _ = self._prepare_generation_config(generation_config, **kwargs)
        gen_mode = gen_c.get_generation_mode(assistant_model)

        if gen_mode not in [GenerationMode.GREEDY_SEARCH, GenerationMode.BEAM_SEARCH]:
            raise ValueError(
                f"Provided generation mode {gen_mode} is not supported"
                f" for WhisperForConditionalGeneration with joint CTC decoding")

        if "stno_mask" in kwargs:
            self.stno_mask = kwargs["stno_mask"]
        if "encoder_outputs" in kwargs:
            self.encoder_logits = kwargs["encoder_outputs"].logits
        # pylint: disable=no-member
        # 0. deprecate old inputs
        if "inputs" in kwargs:
            input_features = kwargs.pop("inputs")
            warnings.warn(
                "The input name `inputs` is deprecated. Please make sure to use `input_features` instead.",
                FutureWarning,
            )

        # 1. prepare generation config
        generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)

        # 2. set global generate variables
        input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
        num_segment_frames = input_stride * self.config.max_source_positions
        batch_size, total_input_frames = self._retrieve_total_input_frames(
            input_features=input_features, input_stride=input_stride, kwargs=kwargs
        )
        is_shortform = total_input_frames <= num_segment_frames

        if is_shortform:
            # warn user of ignored inputs
            self._maybe_warn_unused_inputs(
                condition_on_prev_tokens=condition_on_prev_tokens,
                temperature=temperature,
                compression_ratio_threshold=compression_ratio_threshold,
                logprob_threshold=logprob_threshold,
                no_speech_threshold=no_speech_threshold,
                total_input_frames=total_input_frames,
            )

        # 3. Make sure generation config is correctly set
        # Make sure the generation config is correctly set depending on whether timestamps are to be returned or not
        self._set_return_outputs(
            return_dict_in_generate=return_dict_in_generate,
            return_token_timestamps=return_token_timestamps,
            is_shortform=is_shortform,
            logprob_threshold=logprob_threshold,
            generation_config=generation_config,
        )
        self._set_return_timestamps(
            return_timestamps=return_timestamps, is_shortform=is_shortform, generation_config=generation_config
        )
        self._set_language_and_task(
            language=language, task=task, is_multilingual=is_multilingual, generation_config=generation_config
        )
        self._set_num_frames(
            return_token_timestamps=return_token_timestamps, generation_config=generation_config, kwargs=kwargs
        )
        self._set_thresholds_and_condition(
            generation_config=generation_config,
            logprob_threshold=logprob_threshold,
            compression_ratio_threshold=compression_ratio_threshold,
            no_speech_threshold=no_speech_threshold,
            condition_on_prev_tokens=condition_on_prev_tokens,
        )
        self._set_prompt_condition_type(
            generation_config=generation_config,
            prompt_condition_type=prompt_condition_type,
        )

        # pass self.config for backward compatibility
        init_tokens = self._retrieve_init_tokens(
            input_features,
            batch_size=batch_size,
            generation_config=generation_config,
            config=self.config,
            num_segment_frames=num_segment_frames,
            kwargs=kwargs,
        )
        # passing `decoder_input_ids` is deprecated - the only exception is for assisted generation
        # where the input ids are handled explicitly by the generate method
        self._check_decoder_input_ids(kwargs=kwargs)

        # 3. Retrieve logits processors
        device = kwargs["encoder_outputs"][0].device if "encoder_outputs" in kwargs else input_features.device
        begin_index = init_tokens.shape[1]
        logits_processor = self._retrieve_logit_processors(
            generation_config=generation_config,
            logits_processor=logits_processor,
            begin_index=begin_index,  # begin index is index of first generated decoder token
            is_shortform=is_shortform,
            num_beams=kwargs.get("num_beams", 1),
            device=device,
        )

        # 5. If we're in shortform mode, simple generate the whole input at once and return the output
        if is_shortform:
            if temperature is not None:
                generation_config.temperature = temperature

            decoder_input_ids = kwargs.pop("decoder_input_ids", None)
            if decoder_input_ids is None:
                decoder_input_ids = init_tokens

            if prompt_ids is not None:
                decoder_input_ids = torch.cat(
                    [prompt_ids[None].repeat(decoder_input_ids.shape[0], 1), decoder_input_ids], dim=-1
                )

            max_new_tokens = generation_config.max_new_tokens if generation_config.max_new_tokens is not None else 0
            if max_new_tokens + decoder_input_ids.shape[-1] > self.config.max_target_positions:
                raise ValueError(
                    f"The length of `decoder_input_ids` equal `prompt_ids` plus special start tokens is {decoder_input_ids.shape[-1]}, and the `max_new_tokens` "
                    f"is {max_new_tokens}. Thus, the combined length of "
                    f"`decoder_input_ids` and `max_new_tokens` is: {max_new_tokens + decoder_input_ids.shape[-1]}. This exceeds the "
                    f"`max_target_positions` of the Whisper model: {self.config.max_target_positions}. "
                    "You should either reduce the length of your prompt, or reduce the value of `max_new_tokens`, "
                    f"so that their combined length is less than {self.config.max_target_positions}."
                )

            outputs = super().generate(
                input_features,
                generation_config=generation_config,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
                synced_gpus=synced_gpus,
                decoder_input_ids=decoder_input_ids,
                **kwargs,
            )

            if generation_config.return_token_timestamps and hasattr(generation_config, "alignment_heads"):
                outputs["token_timestamps"] = self._extract_token_timestamps(
                    outputs, generation_config.alignment_heads, num_frames=generation_config.num_frames
                )

            # print("\n".join(self.tokenizer.batch_decode(outputs,skip_special_tokens=True, decode_with_timestamps=True)))
            return outputs

        # 6. Else we're in longform mode which is more complex.
        # We need to chunk the audio input depending on when the model generates timestamp tokens

        # 6.1 Set and retrieve global longform generation variables
        self._set_condition_on_prev_tokens(
            condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config
        )

        timestamp_begin = generation_config.no_timestamps_token_id + 1
        temperatures = [temperature] if not isinstance(temperature, (list, tuple)) else temperature
        temperature = temperatures[0]
        batch_size = input_features.shape[0]

        max_frames, seek = self._retrieve_max_frames_and_seek(
            batch_size=batch_size, attention_mask=attention_mask, total_input_frames=total_input_frames
        )

        # 6.2 Preppare running variables, list for generation
        cur_bsz = batch_size
        current_segments = self._prepare_segments(
            prompt_ids=prompt_ids,
            batch_size=batch_size,
            generation_config=generation_config,
        )

        batch_idx_map = list(range(batch_size))
        do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(batch_size)]

        # 6.2 Transcribe audio until we reach the end of all input audios
        while (seek < max_frames).any():
            # 6.3 NOTE: When in longform transcription mode and batch size > 1 we need to dynamically reduce the batch size during the loop
            # in case one audio finished earlier than another one. Thus, we need to keep a table of "previous-index-2-current-index" in order
            # to know which original audio is being decoded
            # Set updated index map, duration of previously decoded chunks and number of max frames of current decoding chunk
            input_features, cur_bsz, batch_idx_map = self._maybe_reduce_batch(
                input_features=input_features,
                seek=seek,
                max_frames=max_frames,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
            )
            time_offset = seek * time_precision / input_stride
            seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames)

            # 6.4 cut out next 30s segment from input features
            segment_input = self._get_input_segment(
                input_features=input_features,
                seek=seek,
                seek_num_frames=seek_num_frames,
                num_segment_frames=num_segment_frames,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
            )

            # 6.5 prepare decoder input ids
            suppress_tokens = _get_attr_from_logit_processors(
                logits_processor, SuppressTokensLogitsProcessor, "suppress_tokens"
            )
            decoder_input_ids, kwargs = self._prepare_decoder_input_ids(
                cur_bsz=cur_bsz,
                init_tokens=init_tokens,
                current_segments=current_segments,
                batch_idx_map=batch_idx_map,
                do_condition_on_prev_tokens=do_condition_on_prev_tokens,
                prompt_ids=prompt_ids,
                generation_config=generation_config,
                config=self.config,
                device=segment_input.device,
                suppress_tokens=suppress_tokens,
                kwargs=kwargs,
            )

            # 6.6 set max new tokens or max length
            self._set_max_new_tokens_and_length(
                config=self.config,
                decoder_input_ids=decoder_input_ids,
                generation_config=generation_config,
            )

            # 6.7 Set current `begin_index` for all logit processors
            for proc in logits_processor:
                if hasattr(proc, "set_begin_index"):
                    proc.set_begin_index(decoder_input_ids.shape[-1])

            # 6.8 Run generate with fallback
            seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens = self.generate_with_fallback(
                segment_input=segment_input,
                decoder_input_ids=decoder_input_ids,
                cur_bsz=cur_bsz,
                batch_idx_map=batch_idx_map,
                seek=seek,
                num_segment_frames=num_segment_frames,
                max_frames=max_frames,
                temperatures=temperatures,
                generation_config=generation_config,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
                synced_gpus=synced_gpus,
                return_token_timestamps=return_token_timestamps,
                do_condition_on_prev_tokens=do_condition_on_prev_tokens,
                kwargs=kwargs,
            )

            # 6.9 In every generated sequence, split by timestamp tokens and extract segments
            if self.config.mt_num_speakers == 1:
                for i, seek_sequence in enumerate(seek_sequences):
                    prev_i = batch_idx_map[i]

                    if should_skip[i]:
                        seek[prev_i] += seek_num_frames[prev_i]
                        continue

                    segments, segment_offset = self._retrieve_segment(
                        seek_sequence=seek_sequence,
                        seek_outputs=seek_outputs,
                        time_offset=time_offset,
                        timestamp_begin=timestamp_begin,
                        seek_num_frames=seek_num_frames,
                        time_precision=time_precision,
                        input_stride=input_stride,
                        prev_idx=prev_i,
                        idx=i,
                        return_token_timestamps=return_token_timestamps,
                    )

                    current_segments[prev_i] += segments
                    seek[prev_i] += segment_offset
            else:
                # We have to make sure all speakers are synchronized thus we have to find minumum of seeks that each instance like
                for j, seek_seqs in enumerate(
                        [seek_sequences[i * self.config.mt_num_speakers:(i + 1) * self.config.mt_num_speakers] for i in
                         range(len(seek_sequences) // self.config.mt_num_speakers)]):
                    indexes = [j * self.config.mt_num_speakers + i for i in range(self.config.mt_num_speakers)]
                    prev_ids = [batch_idx_map[i] for i in indexes]

                    if all([should_skip[i] for i in indexes]):
                        for i, prev_i in zip(indexes, prev_ids):
                            seek[prev_i] += seek_num_frames[prev_i]
                        continue

                    segments, segment_offset = self._retrieve_segment_mt(
                        seek_sequences=seek_seqs,
                        seek_outputs=seek_outputs,
                        time_offset=time_offset,
                        timestamp_begin=timestamp_begin,
                        seek_num_frames=seek_num_frames,
                        time_precision=time_precision,
                        input_stride=input_stride,
                        prev_ids=prev_ids,
                        ids=indexes,
                        return_token_timestamps=return_token_timestamps,
                    )

                    for prev_i, i in zip(prev_ids, range(self.config.mt_num_speakers)):
                        current_segments[prev_i] += segments[i]
                        seek[prev_i] += segment_offset[i]

        # 7. Once all segments are added to the list of all segments, called `current_segments`, we extract the predicted
        # output tokens from the list of dicts. If we use batch size > 1, we make sure to pad the output
        final_segments = (
            [x[1:] for x in current_segments]
            if (prompt_ids is not None and generation_config.prompt_condition_type == "first-segment")
            else current_segments
        )
        sequences = _pad_to_max_length(
            final_segments, generation_config.pad_token_id, device=self.device, padding="right"
        )

        # 8. If we return all segments, the predicted output sequences are put under `"sequences"`.
        output = {"sequences": sequences, "segments": final_segments}

        self.encoder_logits = None

        if isinstance(output, dict):
            output = self._fix_timestamps_from_segmentation(output)

        return output

    @staticmethod
    def _find_common_seek(sequences, seeks):
        """
        Finds the minimum seek that does not overlap with other sequences,
        and falls back to (segment.start - 0.2) if needed. Assumes:
        - 'seeks' is a list of (seek_time_int, sequence_index),
        - seek_time_int is in timestamp * 100 format (e.g., 125.5s -> 12550).
        """

        def is_valid_seek(seek_time, exclude_seq_idx):
            for idx, seq in enumerate(sequences):
                if idx == exclude_seq_idx:
                    continue
                for segment in seq:
                    start = getattr(segment, 'start', segment['start'])
                    end = getattr(segment, 'end', segment['end'])
                    if seek_time < start:
                        break  # Segments are sorted by end
                    if start < seek_time < end:
                        return False
            return True

        # Step 1: Find minimum seek
        # if all seek values are the same, return it immediately
        seeks = [s if isinstance(s, int) else s.item() for s in seeks]
        if len(set(seeks)) == 1:
            return seeks[0]

        min_seek_val = min(seeks)
        min_seek_idx = seeks.index(min_seek_val)
        min_seek_real = min_seek_val / 100

        if is_valid_seek(min_seek_real, min_seek_idx):
            return min_seek_val

        # Step 2: Try fallback seeks from all sequences (segment.start - 0.1s)
        fallback_seeks = set()
        for idx, seq in enumerate(sequences):
            for segment in seq:
                start = getattr(segment, 'start', segment['start'])
                if isinstance(start, torch.Tensor):
                    start = start.item()
                candidate = round(start, 2)
                fallback_seeks.add((candidate, idx, True))
                end = getattr(segment, 'end', segment['end'])
                if isinstance(end, torch.Tensor):
                    end = end.item()
                if end < min_seek_real:
                    candidate = round(end, 2)
                    fallback_seeks.add((candidate, idx, True))

        valid_fallbacks = [
            (int(s * 100), idx, is_start) for s, idx, is_start in fallback_seeks
            if is_valid_seek(s, min_seek_idx)
        ]

        if valid_fallbacks:
            return max(valid_fallbacks)

        # Step 3: Nothing valid
        return 0

    @staticmethod
    def remove_segments_after_seek(sequences, seek, eps=100):
        """
        Keep only segments that finish before given timestamp.

        Args:
            sequences: List of lists, each containing segments (dict or object with 'start' and 'end').
            seek: Integer seek timestamp (e.g., timestamp * 100).

        Returns:
            None. Modifies the sequences in-place.
        """
        return [[seg for seg in seq if (getattr(seg, 'end', seg['end']) * 100 <= seek + eps)] for seq in sequences]

    @staticmethod
    def _retrieve_segment_wo_seek(
            seek_sequence,
            seek_outputs,
            time_offset,
            timestamp_begin,
            seek_num_frames,
            time_precision,
            input_stride,
            prev_idx,
            idx,
            return_token_timestamps,
    ):
        # find the predicted "end of segment" predictions of Whisper
        # "end of segment" predictions occur whenever Whisper predicts a timestamp token
        timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
        single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
        timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
        timestamp_segment_indices.add_(1)
        token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []

        # If whisper predicted a "end of segment" via a timestep token, let's go ever each
        # "end of segment" prediction and slice the decoding into segments accordingly
        if len(timestamp_segment_indices) > 0:
            # if the output contains two consecutive timestamp tokens
            slices = timestamp_segment_indices.tolist()
            segments = []
            if single_timestamp_ending:
                slices.append(len(seek_sequence))

            last_slice = 0
            # Add each segment to list of all segments
            for current_slice in slices:
                sliced_tokens = seek_sequence[last_slice:current_slice]
                start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
                end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
                segments.append(
                    {
                        "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                        "end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
                        "tokens": sliced_tokens,
                        "result": seek_outputs[idx],
                    }
                )
                if return_token_timestamps:
                    segments[-1]["token_timestamps"] = (
                            token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
                    )
                last_slice = current_slice

            if not single_timestamp_ending:
                # generate all predictions after the last predicted "end of segment" and seek by 30s
                sliced_tokens = seek_sequence[last_slice:]
                start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
                end_timestamp_pos = seek_num_frames[prev_idx] // 2
                segments.append(
                    {
                        "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                        "end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
                        "tokens": sliced_tokens,
                        "result": seek_outputs[idx],
                    }
                )
            segment_offset = seek_num_frames[prev_idx]
        else:
            # If whisper does not predict any "end of segment" token, then
            # the whole decoding is considered a segment and we add it to the list of segments
            timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
            start_timestamp_pos = 0.0
            last_timestamp_pos = seek_num_frames[prev_idx] // 2

            if timestamps.numel() > 1:
                start_timestamp_pos = timestamps[-2].item() - timestamp_begin
                last_timestamp_pos = timestamps[-1].item() - timestamp_begin
            elif timestamps.numel() == 1:
                # no consecutive timestamps but it has a timestamp; use the last one.
                start_timestamp_pos = timestamps[-1].item() - timestamp_begin
            segments = [
                {
                    "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                    "end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
                    "tokens": seek_sequence,
                    "result": seek_outputs[idx],
                }
            ]

            segment_offset = seek_num_frames[prev_idx]

        return segments, segment_offset

    def _retrieve_segment_mt(
            self,
            seek_sequences,
            seek_outputs,
            time_offset,
            timestamp_begin,
            seek_num_frames,
            time_precision,
            input_stride,
            prev_ids,
            ids,
            return_token_timestamps,
    ):
        sequences, seeks = [], []
        for sequence, prev_id, idx in zip(seek_sequences, prev_ids, ids):
            seq, seek = self._retrieve_segment(
                seek_sequence=sequence,
                seek_outputs=seek_outputs,
                time_offset=time_offset,
                timestamp_begin=timestamp_begin,
                seek_num_frames=seek_num_frames,
                time_precision=time_precision,
                input_stride=input_stride,
                prev_idx=prev_id,
                idx=idx,
                return_token_timestamps=return_token_timestamps,
            )
            sequences.append(seq)
            seeks.append(seek + int(time_offset[prev_id] * 100))
        # best_seek = self._find_common_seek(sequences, seeks)
        best_seek = seeks[0]
        # print(f"Best seek {best_seek}")
        if best_seek - (min(time_offset[prev_ids]) * 100) < 100:
            # we cannot rollback, we have to decode segments as they are
            sequences, seeks = [], []
            for sequence, prev_id, idx in zip(seek_sequences, prev_ids, ids):
                seq, seek = self._retrieve_segment_wo_seek(
                    seek_sequence=sequence,
                    seek_outputs=seek_outputs,
                    time_offset=time_offset,
                    timestamp_begin=timestamp_begin,
                    seek_num_frames=seek_num_frames,
                    time_precision=time_precision,
                    input_stride=input_stride,
                    prev_idx=prev_id,
                    idx=idx,
                    return_token_timestamps=return_token_timestamps,
                )
                sequences.append(seq)
                seeks.append(seek)
            return sequences, seeks

        seqs_new = self.remove_segments_after_seek(sequences, best_seek)
        seeks = [best_seek - int(min(time_offset[prev_ids]) * 100) for _ in seeks]
        return seqs_new, seeks

    def _beam_search(
            self,
            input_ids: torch.LongTensor,
            beam_scorer: BeamScorer,
            logits_processor: LogitsProcessorList,
            stopping_criteria: StoppingCriteriaList,
            generation_config: GenerationConfig,
            synced_gpus: bool,
            logits_warper: Optional[LogitsProcessorList] = None,
            **model_kwargs,
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`:
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
        """
        # init values
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        raw_logits = () if (return_dict_in_generate and output_logits) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder

        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # if sequential is True, split the input to batches of batch_size and run sequentially
            if sequential:
                if any(
                        model_name in self.__class__.__name__.lower()
                        for model_name in [
                            "fsmt",
                            "reformer",
                            "bloom",
                            "ctrl",
                            "gpt_bigcode",
                            "transo_xl",
                            "xlnet",
                            "cpm",
                            "jamba",
                        ]
                ):
                    raise RuntimeError(
                        f"Currently generation for {self.__class__.__name__} is not supported "
                        f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
                    )

                inputs_per_sub_batches = _split_model_inputs(
                    model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
                )
                outputs_per_sub_batch = [
                    self(
                        **inputs_per_sub_batch,
                        return_dict=True,
                        output_attentions=output_attentions,
                        output_hidden_states=output_hidden_states,
                    )
                    for inputs_per_sub_batch in inputs_per_sub_batches
                ]

                outputs = stack_model_outputs(outputs_per_sub_batch)

            else:  # Unchanged original behavior
                outputs = self(
                    **model_inputs,
                    return_dict=True,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
            if do_sample:
                next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
                if output_logits:
                    raw_logits += (next_token_logits,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)
                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

            # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
            # non eos token per beam.
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
            n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
                next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
                next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
                next_tokens = torch.gather(next_tokens, -1, _indices)
            else:
                next_token_scores, next_tokens = torch.topk(
                    next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
                )

            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
                decoder_prompt_len=decoder_prompt_len,
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            # Based on the beam idx and next tokens reshuffle the ctc prev states and scores
            if hasattr(self, "ctc_rescorer"):
                self.ctc_rescorer.update_state(beam_next_tokens, beam_idx)
            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
            )
            if model_kwargs.get("past_key_values", None) is not None:
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
                this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
            decoder_prompt_len=decoder_prompt_len,
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return GenerateBeamEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    logits=raw_logits,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
            else:
                return GenerateBeamDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    logits=raw_logits,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
        else:
            return sequence_outputs["sequences"]

    def _sample(
            self,
            input_ids: torch.LongTensor,
            logits_processor: LogitsProcessorList,
            stopping_criteria: StoppingCriteriaList,
            generation_config: GenerationConfig,
            synced_gpus: bool,
            streamer: Optional["BaseStreamer"],
            logits_warper: Optional[LogitsProcessorList] = None,
            **model_kwargs,
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
        """
        # init values
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        raw_logits = () if (return_dict_in_generate and output_logits) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
        batch_size = input_ids.shape[0]
        this_peer_finished = False
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)

        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            if do_sample:
                next_token_scores = logits_warper(input_ids, next_token_scores)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_logits:
                    raw_logits += (next_token_logits,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # token selection
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(next_token_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if has_eos_stopping_criteria:
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # Based on the next tokens select the ctc prev states and scores
            if hasattr(self, "ctc_rescorer"):
                self.ctc_rescorer.update_state(next_tokens, torch.arange(next_tokens.shape[0]))

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            if streamer is not None:
                streamer.put(next_tokens.cpu())
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
            )

            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
            this_peer_finished = unfinished_sequences.max() == 0

        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GenerateEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    logits=raw_logits,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
            else:
                return GenerateDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    logits=raw_logits,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                    past_key_values=model_kwargs.get("past_key_values"),
                )
        else:
            return input_ids

    def prepare_kwargs_for_generate(self,
                                    segment_input,
                                    cur_bsz,
                                    batch_idx_map,
                                    seek,
                                    num_segment_frames,
                                    max_frames,
                                    kwargs):
        kwargs["attention_mask_enc"] = torch.ones(cur_bsz, segment_input.size(-1), device=segment_input.device)
        seek_vad = seek // 2
        num_frames_vad = num_segment_frames // 2
        max_frames_vad = max_frames // 2
        seek_num_frames = (max_frames_vad - seek_vad).clamp(max=num_frames_vad)

        stno_masks = []
        for i in range(cur_bsz):
            prev_i = batch_idx_map[i]
            segment_input_slice = kwargs["stno_mask"][prev_i: prev_i + 1, :,
                                  seek_vad[prev_i]: seek_vad[prev_i] + seek_num_frames[prev_i]]

            if segment_input_slice.shape[-1] < num_frames_vad:
                orig_len = segment_input_slice.shape[-1]
                # pad to 3000 if necessary
                segment_input_slice = torch.nn.functional.pad(
                    segment_input_slice, pad=(0, num_frames_vad - orig_len)
                )
                # set corresponding padding tokens to 1 in vad mask representing silence
                segment_input_slice[0, 0, orig_len:] = 1.0

            stno_masks.append(segment_input_slice)
        kwargs["stno_mask"] = torch.cat(stno_masks, dim=0)
        self.stno_mask_seek = kwargs["stno_mask"]

        if "per_group_sizes" in kwargs:
            group_sizes = kwargs["per_group_sizes"].clone()
            group_sizes[:] = 0
            cummulative_group_sizes = (
                kwargs["per_group_sizes"].max().repeat(kwargs["per_group_sizes"].shape[0])).cumsum(dim=0)
            for i in batch_idx_map:
                group_idx = (cummulative_group_sizes > i).nonzero().min()
                group_sizes[group_idx] += 1
            kwargs["per_group_sizes"] = group_sizes

        if self.vad_seek_callback is not None:
            self.vad_seek_callback(kwargs["stno_mask"])
        return kwargs

    def generate_with_fallback(
            self,
            segment_input,
            decoder_input_ids,
            cur_bsz,
            batch_idx_map,
            seek,
            num_segment_frames,
            max_frames,
            temperatures,
            generation_config,
            logits_processor,
            stopping_criteria,
            prefix_allowed_tokens_fn,
            synced_gpus,
            return_token_timestamps,
            do_condition_on_prev_tokens,
            kwargs,
    ):
        kwargs = copy.copy(kwargs)
        kwargs = self.prepare_kwargs_for_generate(segment_input, cur_bsz, batch_idx_map, seek, num_segment_frames,
                                                  max_frames, kwargs)
        seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens = super().generate_with_fallback(
            segment_input,
            decoder_input_ids,
            cur_bsz,
            batch_idx_map,
            seek,
            num_segment_frames,
            max_frames,
            temperatures,
            generation_config,
            logits_processor,
            stopping_criteria,
            prefix_allowed_tokens_fn,
            synced_gpus,
            return_token_timestamps,
            do_condition_on_prev_tokens,
            kwargs,
        )
        self.stno_mask_seek = None

        # for i,  seq in enumerate(seek_outputs):
        #     print(f"Sequence {i}: {self.tokenizer.decode(seq, decode_with_timestamps=True)}")
        # print("-"*50)

        return seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens

    def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs):
        def replace_or_add(lst: List[int], num: int, itr: Iterator[int]):
            """short function to replace num with a itr in lst"""
            found = any(i in lst for i in itr)
            if found:
                lst = [num if i in itr else i for i in lst]
            else:
                lst.append(num)
            return lst

        def language_to_id(language: str) -> int:
            language = language.lower()
            if language in generation_config.lang_to_id.keys():
                language_token = language
            elif language in TO_LANGUAGE_CODE.keys():
                language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
            elif language in TO_LANGUAGE_CODE.values():
                language_token = f"<|{language}|>"
            else:
                is_language_code = len(language) == 2
                raise ValueError(
                    f"Unsupported language: {language}. Language should be one of:"
                    f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
                )
            if language_token not in generation_config.lang_to_id:
                raise ValueError(
                    f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
                    "(You should just add it to the generation config)"
                )

            return generation_config.lang_to_id[language_token]

        task = getattr(generation_config, "task", None)
        language = getattr(generation_config, "language", None)

        forced_decoder_ids = generation_config.forced_decoder_ids
        if forced_decoder_ids is not None:
            if language is None and task is None and forced_decoder_ids[0][1] is None:
                logger.warning_once(
                    "Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English."
                    "This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`."
                )
        elif hasattr(config, "forced_decoder_ids") and config.forced_decoder_ids is not None:
            forced_decoder_ids = config.forced_decoder_ids

        elif forced_decoder_ids is not None and language is not None:
            logger.info(
                f"You have passed language={language}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of language={language}."
            )
            forced_decoder_ids = None

        init_tokens = [generation_config.decoder_start_token_id]

        # Update init_tokens with languages
        lang_ids = None

        if forced_decoder_ids is not None:
            return forced_decoder_ids

        # from v4.39 the forced decoder ids are always None in favour of decoder input ids
        generation_config.forced_decoder_ids = None

        is_lang_id_undefined = len(init_tokens) <= 1 or (len(init_tokens) > 1 and init_tokens[1] is None)

        # Make sure language is a list of strings of the correct length
        if isinstance(language, (list, tuple)):
            if any(l is None for l in language):
                raise TypeError(
                    "Expected `language` to be `None`, a single string (e.g. `'en'`), or a list of strings with length equal to the batch size (e.g. `('en', 'fr')` for a batch size of 2). Got a list containing `None`."
                )
            if len(language) != batch_size:
                raise ValueError(
                    "When passing a list of languages, the length of the list must match the batch size. "
                    f"Expected length of {batch_size}, but got {len(language)} languages."
                )
            languages = language
        elif language is None:
            # Language will be detected for each item in batch
            languages = [None] * batch_size
        else:
            languages = [language]  # Use a length-1 list now, broadcast later

        # Separate init_tokens for each language
        init_tokens = [copy.copy(init_tokens) for _ in languages]

        if language is not None and lang_ids is not None:
            lang_ids = [language_to_id(l) for l in languages]
        elif hasattr(generation_config, "lang_to_id") and is_lang_id_undefined:
            # language is not defined or intentially set to `None` to trigger language detection
            lang_ids = self.detect_language(
                input_features=input_features,
                encoder_outputs=kwargs.get("encoder_outputs", None),
                generation_config=generation_config,
                num_segment_frames=num_segment_frames,
            ).tolist()
        if lang_ids is not None:
            # append or replace lang_ids to init_tokens
            for i in range(len(init_tokens)):
                if len(init_tokens[i]) > 1:
                    init_tokens[i][1] = lang_ids[i]
                else:
                    init_tokens[i].append(lang_ids[i])
        del languages

        # Update init_tokens with task
        for i in range(len(init_tokens)):
            if task is not None:
                if task in TASK_IDS:
                    init_tokens[i].append(generation_config.task_to_id[generation_config.task])
                    task_id = generation_config.task_to_id[generation_config.task]

                    # if task is defined it'll overwrite task ids that might have already been defined via the generation_config
                    replace_or_add(init_tokens[i], task_id, generation_config.task_to_id.values())
                else:
                    raise ValueError(f"The `{task}`task is not supported. The task should be one of `{TASK_IDS}`")
            elif language is not None and hasattr(generation_config, "task_to_id"):
                # if language is defined, but no task id is in `init_tokens`, default to transcribe
                if not any(ti in init_tokens[i] for ti in generation_config.task_to_id.values()):
                    init_tokens[i].append(generation_config.task_to_id["transcribe"])

            # let's make sure we don't pass `None` tokens as prompt tokens
            init_tokens[i] = [t for t in init_tokens[i] if t is not None]

        return torch.as_tensor(init_tokens, dtype=torch.long, device=self.device).expand(batch_size, -1)

    def detect_language(
            self,
            input_features: Optional[torch.FloatTensor] = None,
            encoder_outputs: Optional[Union[torch.FloatTensor, BaseModelOutput]] = None,
            generation_config: Optional[GenerationConfig] = None,
            num_segment_frames: int = 3000,
    ) -> torch.Tensor:
        """
        Detects language from log-mel input features or encoder_outputs

        Parameters:
            input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
                Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
                loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
                the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
                [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
                tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
            encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
                Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
                `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
                hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            num_segment_frames (`int`, defaults to 3000):
                The number of log-mel frames the model expects

        Return:
            A `torch.LongTensor` representing the detected language ids.
        """
        if input_features is None and encoder_outputs is None:
            raise ValueError("You have to specify either `input_features` or `encoder_outputs`")
        elif input_features is not None and encoder_outputs is not None:
            raise ValueError("Make sure to specificy only one of `input_features` or `encoder_outputs` - not both!")
        elif input_features is not None:
            inputs = {"input_features": input_features[:, :, :num_segment_frames]}
            batch_size = input_features.shape[0]
        elif encoder_outputs is not None:
            inputs = {"encoder_outputs": encoder_outputs}
            batch_size = (
                encoder_outputs[0].shape[0] if isinstance(encoder_outputs, BaseModelOutput) else encoder_outputs[0]
            )

        generation_config = generation_config or self.generation_config
        decoder_input_ids = (
                torch.ones((batch_size, 1), device=self.device, dtype=torch.long)
                * generation_config.decoder_start_token_id
        )

        with torch.no_grad():
            logits = self(**inputs, decoder_input_ids=decoder_input_ids,
                          stno_mask=self.stno_mask[:, :, :num_segment_frames // 2]).logits[:, -1]

        non_lang_mask = torch.ones_like(logits[0], dtype=torch.bool)
        non_lang_mask[list(generation_config.lang_to_id.values())] = False

        logits[:, non_lang_mask] = -np.inf

        lang_ids = logits.argmax(-1)

        return lang_ids

    def _get_logits_processor(
            self,
            generation_config: GenerationConfig,
            input_ids_seq_length: int,
            encoder_input_ids: torch.LongTensor,
            prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
            logits_processor: Optional[LogitsProcessorList],
            device: str = None,
            model_kwargs: Optional[Dict[str, Any]] = None,
            negative_prompt_ids: Optional[torch.Tensor] = None,
            negative_prompt_attention_mask: Optional[torch.Tensor] = None,
    ) -> LogitsProcessorList:
        # pylint: disable=no-member
        gen_config_copy = copy.deepcopy(generation_config)
        gen_config_copy.forced_decoder_ids = None
        processors = super()._get_logits_processor(
            gen_config_copy,
            input_ids_seq_length,
            encoder_input_ids,
            prefix_allowed_tokens_fn,
            logits_processor,
            device,
            model_kwargs,
            negative_prompt_ids,
            negative_prompt_attention_mask,
        )
        if hasattr(generation_config, "ctc_weight") and generation_config.ctc_weight > 0:
            enc_logits = self.encoder_logits
            if generation_config.num_beams <= 1:
                processors.append(LogSoftmaxProcessor())
            else:
                enc_logits = enc_logits.repeat_interleave(generation_config.num_beams, dim=0)
            self.ctc_rescorer = CTCRescorerLogitsProcessor(
                enc_logits,
                torch.full((enc_logits.shape[0],), fill_value=enc_logits.shape[1],
                           device=enc_logits.device),
                enc_logits.shape[-1] - 1,
                generation_config.pad_token_id.item(),
                generation_config.eos_token_id.item(),
                generation_config.decoder_start_token_id.item(),
                self.tokenizer,
                generation_config.ctc_margin,
                generation_config.ctc_weight,
                generation_config.num_beams,
                False,
            )
            processors.append(self.ctc_rescorer)
        return processors

    def _retrieve_logit_processors(self, generation_config, logits_processor, begin_index, is_shortform, num_beams,
                                   device):
        if generation_config.return_timestamps is True:
            timestamp_processor = WhisperTimeStampLogitsProcessorCustom(generation_config, begin_index=begin_index)
            logits_processor = (
                [timestamp_processor] if logits_processor is None else [timestamp_processor] + logits_processor
            )

        if generation_config.suppress_tokens is not None:
            suppress_tokens_processor = SuppressTokensLogitsProcessor(generation_config.suppress_tokens, device=device)
            logits_processor = (
                [suppress_tokens_processor]
                if logits_processor is None
                else [suppress_tokens_processor] + logits_processor
            )
            generation_config.suppress_tokens = None

        if generation_config.begin_suppress_tokens is not None:
            begin_suppress_processor = SuppressTokensAtBeginLogitsProcessor(
                generation_config.begin_suppress_tokens, begin_index=begin_index, device=device
            )
            logits_processor = (
                [begin_suppress_processor]
                if logits_processor is None
                else [begin_suppress_processor] + logits_processor
            )
            generation_config.begin_suppress_tokens = None

        if generation_config.no_speech_threshold is not None and not is_shortform:
            no_speech_detector = WhisperNoSpeechDetection(
                no_speech_token=generation_config.no_timestamps_token_id - 1,
                begin_index=begin_index,
                scores_is_logprobs=num_beams > 1,
            )
            logits_processor = (
                [no_speech_detector] if logits_processor is None else [no_speech_detector] + logits_processor
            )
            no_speech_detector.set_model(self)

        return logits_processor

    @staticmethod
    def round_to_nearest_0_02(x):
        d = Decimal(str(x))  # Use str(x) to preserve input precision
        step = Decimal('0.02')
        # Divide, round, multiply back
        rounded = (d / step).to_integral_value(rounding=ROUND_HALF_UP) * step
        return rounded

    def _fix_timestamps_from_segmentation(self, sequences):
        """
        Adjusts token sequences with global timestamps to fit within Whisper's 0–30s timestamp token range.

        This function modifies the input sequences by inserting appropriate timestamp tokens and
        offset corrections to ensure the decoded token order is correct, without splitting any segment.
        It aligns all timestamps to 0.02-second precision, inserts placeholder segments to bridge
        time gaps between 30-second windows, and maintains segment continuity during encoding.

        Args:
            sequences (dict): A dictionary containing:
                - 'segments': A list of segment lists, each segment being a dict with 'start', 'end', and 'tokens'.
                - 'sequences': A tensor used to determine device for padding.

        Returns:
            torch.Tensor: A batch of padded token sequences with corrected timestamp alignment.
        """
        # Get the token ID for the "<|0.00|>" timestamp used to detect dummy segments
        first_timestamp_token = self.tokenizer.get_vocab()["<|0.00|>"]
        results = []

        # Filter out segments that are either empty or consist only of the "<|0.00|>" token
        for idx, sequence_segs in enumerate(sequences['segments']):
            sequences['segments'][idx] = [
                seg for seg in sequence_segs
                if len(seg['tokens']) > 0 and (len(seg['tokens']) != 1 or seg['tokens'][0] != first_timestamp_token)
            ]

        # Iterate over each group of segments (e.g., one per utterance)
        for idx, sequence_segs in enumerate(sequences['segments']):
            result = []
            prev_segment_end_time = None
            correction = Decimal(0.0)

            for i, seg in enumerate(sequence_segs):
                # Round start and end times to nearest 0.02 seconds
                start_time = self.round_to_nearest_0_02(seg['start'].item())
                end_time = self.round_to_nearest_0_02(seg['end'].item())
                tokens = seg['tokens']

                # Determine which 30s window this segment falls into
                current_block = (start_time + correction) // 30

                if prev_segment_end_time is not None:
                    # If not the first segment, calculate difference in 30s windows
                    prev_block = prev_segment_end_time // 30
                    num_dummies = current_block - prev_block - 1

                    # Insert (30, [], 30) marker if we're moving to a new block
                    if current_block > prev_block:
                        result.append((30, [], 30))

                    # Insert dummy segments to bridge skipped 30s blocks
                    for _ in range(int(num_dummies)):
                        result.append((0, [], 30))
                else:
                    # For the first segment, add dummy blocks if it starts after 30s
                    for _ in range(int(start_time // 30)):
                        result.append((0, [], 30))

                # Determine whether segment fits in one block or wraps to the next
                if (start_time + correction) // 30 == (end_time + correction) // 30:
                    # Segment fits within a single 30s window
                    result.append(((start_time + correction) % 30, tokens, (end_time + correction) % 30))
                else:
                    # Segment would wrap across a 30s boundary
                    new_seg_start = (correction + start_time) % 30
                    new_seg_end = end_time - start_time

                    if new_seg_end >= new_seg_start:
                        # Seek back to the beginning of the segment window
                        result.append((new_seg_start, [], new_seg_start))
                        result.append((0, tokens, new_seg_end))
                        # Apply correction to align future timestamps to new 30s block
                        correction = self.round_to_nearest_0_02(-(start_time % 30))
                    else:
                        # Otherwise, just insert with adjusted times
                        result.append((new_seg_start, tokens, new_seg_end))
                        correction = self.round_to_nearest_0_02(30 - (start_time % 30))
                # print(f'Processed segment {i}, result: {self.tokenizer.decode(self.tokenizer("".join([f"<|{seg[0]:.2f}|>{self.tokenizer.decode(seg[1])}<|{seg[2]:.2f}|>" for seg in result]))["input_ids"], decode_with_timestamps=True)[-250:]}')
                # Update the previous segment's end time for next iteration
                prev_segment_end_time = end_time + correction

            # Convert result segments into a token sequence with proper timestamp formatting
            encoded = self.tokenizer(
                "".join([f"<|{seg[0]:.2f}|>{self.tokenizer.decode(seg[1])}<|{seg[2]:.2f}|>" for seg in result])
            )['input_ids']
            results.append(encoded)

        # Pad all sequences to the same length for batching
        sequences = pad_sequence(
            [torch.tensor(res, device=sequences['sequences'].device) for res in results],
            batch_first=True,
            padding_value=self.tokenizer.pad_token_id
        )
        return sequences

    @staticmethod
    def _retrieve_segment(
            seek_sequence,
            seek_outputs,
            time_offset,
            timestamp_begin,
            seek_num_frames,
            time_precision,
            input_stride,
            prev_idx,
            idx,
            return_token_timestamps,
    ):
        # find the predicted "end of segment" predictions of Whisper
        # "end of segment" predictions occur whenever Whisper predicts a timestamp token
        timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
        single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
        timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
        timestamp_segment_indices.add_(1)
        token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []

        # If whisper predicted a "end of segment" via a timestep token, let's go ever each
        # "end of segment" prediction and slice the decoding into segments accordingly
        if len(timestamp_segment_indices) > 0:
            # if the output contains two consecutive timestamp tokens
            slices = timestamp_segment_indices.tolist()
            segments = []
            if single_timestamp_ending:
                slices.append(len(seek_sequence))

            last_slice = 0
            # Add each segment to list of all segments
            for current_slice in slices:
                sliced_tokens = seek_sequence[last_slice:current_slice]
                start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
                end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
                segments.append(
                    {
                        "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                        "end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
                        "tokens": sliced_tokens,
                        "result": seek_outputs[idx],
                    }
                )
                if return_token_timestamps:
                    segments[-1]["token_timestamps"] = (
                            token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
                    )
                last_slice = current_slice

            if single_timestamp_ending:
                # single timestamp at the end means no speech after the last timestamp.
                segment_offset = seek_num_frames[prev_idx]
            else:
                # otherwise, ignore the unfinished segment and seek to the last timestamp
                # here we throw away all predictions after the last predicted "end of segment"
                # since we are cutting right in the middle of an audio
                last_timestamp_pos = seek_sequence[last_slice - 1].item() - timestamp_begin
                segment_offset = last_timestamp_pos * input_stride
        else:
            # If whisper does not predict any "end of segment" token, then
            # the whole decoding is considered a segment and we add it to the list of segments
            timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
            start_timestamp_pos = 0.0
            last_timestamp_pos = seek_num_frames[prev_idx] // 2
            skip = False
            segment_offset = seek_num_frames[prev_idx]

            if timestamps.numel() > 1:
                start_timestamp_pos = timestamps[-2].item() - timestamp_begin
                last_timestamp_pos = timestamps[-1].item() - timestamp_begin
            elif timestamps.numel() == 1:
                # no consecutive timestamps but it has a timestamp; use the last one.
                start_timestamp_pos = timestamps[-1].item() - timestamp_begin
                if start_timestamp_pos > 200:
                    # segment does not fit into decoding window, so we need to rollback
                    segment_offset = start_timestamp_pos * input_stride - 100  # timestamp might be inaccurate
                    skip = True
            else:
                # empty sequence, or sequence w/o timestamps
                skip = True

            if skip:
                segments = []
            else:
                segments = [
                    {
                        "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
                        "end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
                        "tokens": seek_sequence,
                        "result": seek_outputs[idx],
                    }
                ]
                if return_token_timestamps:
                    segments[-1]["token_timestamps"] = token_timestamps + time_offset[prev_idx]
                segment_offset = seek_num_frames[prev_idx]

        if segment_offset <= 0:
            msg = f"Timestamps: {timestamps}, Segments: {segments}"
            raise ValueError(f"Segment offset: {segment_offset} <= 0. This should not happen!\n{msg}")

        return segments, segment_offset

    def _postprocess_outputs(self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config):
        # remove all previously passed decoder input ids
        if isinstance(seek_outputs, torch.Tensor):
            seek_outputs = seek_outputs[:, decoder_input_ids.shape[-1]:]
            seek_outputs = torch.hstack((
                seek_outputs,
                torch.full((seek_outputs.shape[0], 1),
                           fill_value=generation_config.pad_token_id,
                           dtype=seek_outputs.dtype,
                           device=seek_outputs.device
                           )
            ))
            # first_eos = (seek_outputs == generation_config.eos_token_id).int().argmax(dim=1)
            # biggest_timestamp = generation_config.no_timestamps_token_id + 1 + 30 * 50

            # empty_transcriptions = first_eos == 0
            # seek_outputs[empty_transcriptions, 0] = generation_config.no_timestamps_token_id + 1  # 0.00 timestamp
            # seek_outputs[empty_transcriptions, 1] = biggest_timestamp  # 30.00 timestamp
            # seek_outputs[empty_transcriptions, 2] = generation_config.eos_token_id  # 30.00 timestamp

            return seek_outputs, seek_outputs

        if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
            num_frames = getattr(generation_config, "num_frames", None)
            seek_outputs["token_timestamps"] = self._extract_token_timestamps(
                seek_outputs, generation_config.alignment_heads, num_frames=num_frames
            )
            seek_outputs["token_timestamps"] = seek_outputs["token_timestamps"][:, decoder_input_ids.shape[-1]:]

        seek_outputs["sequences"] = seek_outputs["sequences"][:, decoder_input_ids.shape[-1]:]

        def split_by_batch_index(values, key, batch_idx):
            if key == "scores":
                return [v[batch_idx].cpu() for v in values]
            elif key == "past_key_values":
                # we don't save `past_key_values` as this is too costly
                return None
            elif isinstance(values[batch_idx], tuple) and torch.is_tensor(values[batch_idx][0]):
                return tuple(tuple(w[batch_idx][None].cpu() for w in v) for v in values)
            return values[batch_idx].cpu()

        sequence_tokens = seek_outputs["sequences"]
        seek_outputs = [
            {k: split_by_batch_index(v, k, i) for k, v in seek_outputs.items()}
            for i in range(sequence_tokens.shape[0])
        ]

        return sequence_tokens, seek_outputs