File size: 11,652 Bytes
c00ff2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
from torch import nn
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutput
from transformers.models.whisper.modeling_whisper import WhisperEncoder, WhisperEncoderLayer, WHISPER_ATTENTION_CLASSES
from .FDDT import FDDT
from .config import DiCoWConfig
from .SCBs import SpeakerCommunicationBlock
class DiCoWEncoder(WhisperEncoder):
config_class = DiCoWConfig
def __init__(self, config: DiCoWConfig):
super().__init__(config)
self.ctc_weight = config.ctc_weight
if config.additional_layer and self.ctc_weight > 0.0:
self.additional_layer = WhisperEncoderLayer(config)
if config.additional_self_attention_layer and self.ctc_weight > 0.0:
self.additional_self_attention_layer = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.d_model,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
if config.sub_sample and self.ctc_weight > 0.0:
self.subsample_conv1 = nn.Conv1d(
in_channels=config.d_model,
out_channels=config.d_model,
kernel_size=3,
stride=2,
padding=1,
bias=False,
)
self.subsample_conv2 = nn.Conv1d(
in_channels=config.d_model,
out_channels=config.d_model,
kernel_size=3,
stride=2,
padding=1,
bias=False,
)
if self.ctc_weight > 0.0:
self.lm_head = nn.Linear(config.d_model, config.vocab_size + 1, bias=False)
self.final_dropout = nn.Dropout(config.final_dropout)
if config.use_fddt:
num_fddts = self.config.apply_fddt_to_n_layers if self.config.apply_fddt_to_n_layers != -1 else len(
self.layers)
self.initial_fddt = FDDT(config.d_model,
non_target_rate=config.non_target_fddt_value,
is_diagonal=config.fddt_is_diagonal,
bias_only=config.fddt_bias_only,
use_silence=config.fddt_use_silence,
use_target=config.fddt_use_target,
use_overlap=config.fddt_use_overlap,
use_non_target=config.fddt_use_non_target,
use_interaction=False,
scb_module=None
# in initial layers we dont want communication
)
num_scbs = (self.config.scb_layers if self.config.scb_layers != -1 else len(
self.layers)) if self.config.is_mt else 0
self.scbs_identity_layers = config.encoder_layers - num_scbs
self.fddts = nn.ModuleList([
FDDT(config.d_model,
non_target_rate=1.0,
is_diagonal=config.fddt_is_diagonal,
bias_only=config.fddt_bias_only,
use_silence=config.fddt_use_silence,
use_target=config.fddt_use_target,
use_overlap=config.fddt_use_overlap,
use_non_target=config.fddt_use_non_target,
use_interaction=i >= self.scbs_identity_layers,
scb_module=SpeakerCommunicationBlock(config,
scb_method=config.scb_method) if i >= self.scbs_identity_layers else None,
)
for i in range(num_fddts)
])
self.first_task_token = self.config.vocab_size - 30 * 50 - 1 - 6 # 30 seconds of 50 Hz timestamps -1 to get to 0.0 and -6 number of tasks
self.post_init()
@classmethod
def _load_pretrained_model(
cls,
model,
state_dict,
loaded_keys,
resolved_archive_file,
pretrained_model_name_or_path,
**kwargs
):
for key in list(state_dict.keys()):
if key.startswith("encoder."):
state_dict[key[8:]] = state_dict.pop(key)
loaded_keys.remove(key)
loaded_keys.append(key[8:])
output = super()._load_pretrained_model(
model,
state_dict,
loaded_keys,
resolved_archive_file,
pretrained_model_name_or_path,
**kwargs
)
return output
def get_loss(self, logits, labels):
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
if self.config.remove_timestamps_from_ctc:
labels = torch.nn.utils.rnn.pad_sequence([label[label < self.first_task_token] for label in labels],
padding_value=-100).T
input_lengths = torch.full((logits.shape[0],), fill_value=logits.shape[1],
device=logits.device)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
# flattened_targets = labels_enc.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=True):
ctc_loss = nn.functional.ctc_loss(
log_probs,
labels,
input_lengths,
target_lengths,
blank=logits.shape[-1] - 1,
reduction=self.config.ctc_loss_reduction,
zero_infinity=True,
)
return ctc_loss
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
stno_mask=None,
per_group_sizes=None
):
# For MT-ASR the input has shape (B X S) x F x T
# we can use torch.view(B, S, F, -1) to obtain
# new tensor with speaker dim
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
if input_features.shape[-1] != expected_seq_length:
if input_features.shape[-1] > expected_seq_length:
return CausalLMOutput(
logits=None,
hidden_states=None,
attentions=None,
)
else:
raise ValueError(
f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
if self.config.use_fddt:
inputs_embeds = self.initial_fddt(inputs_embeds, stno_mask)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if self.config.use_fddt and idx < len(self.fddts):
hidden_states = self.fddts[idx](hidden_states, stno_mask)
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
outputs = tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
else:
outputs = BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
if hasattr(self, "additional_layer"):
inter_output, = self.additional_layer(
outputs.last_hidden_state,
attention_mask=None,
output_attentions=output_attentions,
layer_head_mask=None,
)
elif hasattr(self, "additional_self_attention_layer"):
inter_output, _, __ = self.additional_self_attention_layer(
outputs.last_hidden_state,
attention_mask=None,
output_attentions=output_attentions,
layer_head_mask=None,
)
else:
inter_output = outputs.last_hidden_state
inter_output = self.final_dropout(inter_output)
if hasattr(self, "subsample_conv2"):
inter_output = self.subsample_conv2(self.subsample_conv1(inter_output.transpose(1, 2))).transpose(1, 2)
if self.ctc_weight > 0.0:
logits = self.lm_head(inter_output)
else:
logits = None
return CausalLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|