Update README.md
Browse files
README.md
CHANGED
@@ -12,15 +12,40 @@ language: en
|
|
12 |
## BUDDI Table Factory: A toolbox for generating synthetic documents with annotated tables and cells
|
13 |
|
14 |
|
15 |
-
|
16 |
|
17 |
-
We
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|
20 |
-
|-------------------|-----------|-----------|--------|
|
21 |
-
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
|
22 |
-
| XLNet-Large | -/- | -/80.2 | 86.8 |
|
23 |
-
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 |
|
24 |
|
25 |
### Citation
|
26 |
|
|
|
12 |
## BUDDI Table Factory: A toolbox for generating synthetic documents with annotated tables and cells
|
13 |
|
14 |
|
15 |
+
**About**
|
16 |
|
17 |
+
In Cell detection, we initialize the weights with a pre-trained CDeCNet model using COCO dataset. We re-train the model for five epochs using a stochastic gradient descent optimizer with a learning rate of 0.00125, the momentum of 0.9, and weight decay of 0.0001.
|
18 |
+
|
19 |
+
***Hardware Used***
|
20 |
+
|
21 |
+
We perform all the experiments on NVIDIA GeForce RTX 2080 Ti GPU with 12 GB GPU memory, Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz, and 128 GB of RAM.
|
22 |
+
|
23 |
+
**Table Detection Model & Training Parameter**
|
24 |
+
***Optimizer***
|
25 |
+
| Parameter |Value |
|
26 |
+
|--|--|
|
27 |
+
| Type | SGD |
|
28 |
+
| Learning Rate |0.00125 |
|
29 |
+
| Momentum | 0.8 |
|
30 |
+
| Weight Decay |0.001 |
|
31 |
+
|
32 |
+
|
33 |
+
*** Learning Policy ***
|
34 |
+
| Parameter |Value |
|
35 |
+
|--|--|
|
36 |
+
| Policy | Step |
|
37 |
+
|Warmup | Linear |
|
38 |
+
| Warmup Iteration | 100 |
|
39 |
+
| Warmup Ratio |0.001 |
|
40 |
+
| Step | 4,16,32 |
|
41 |
+
|
42 |
+
***General Parameter***
|
43 |
+
| Parameter |Value |
|
44 |
+
|--|--|
|
45 |
+
| Epoch | 10 |
|
46 |
+
| Step Interval |50 |
|
47 |
+
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
### Citation
|
51 |
|