File size: 33,490 Bytes
ce0919b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
import os, time, pickle, shutil
import pandas as pd
import numpy as np

from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import GradScaler
from torch import autocast

import torchvision.transforms as transforms

import timm
from timm.models import create_model
from timm.utils import ModelEmaV2

from timm.optim import create_optimizer_v2

from torchmetrics import MeanMetric
from torchmetrics.classification import MulticlassAccuracy, MulticlassF1Score
from torchmetrics import MetricCollection

from pytorch_metric_learning.losses import ArcFaceLoss

import wandb

import matplotlib.pyplot as plt


# ### parameters
################## Settings #############################
#os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
torch.backends.cudnn.benchmark = True

################## Data Paths ##########################
MODEL_DIR = "./convnext2b_metaEmbedding_focal05es_arcloss/"

if not os.path.exists(MODEL_DIR):
    os.makedirs(MODEL_DIR)
shutil.copyfile('./convnext2b_exp4_meta_embedding_focalarcloss.py', f'{MODEL_DIR}convnext2b_exp4_meta_embedding_focalarcloss.py')

TRAIN_DATA_DIR = "/SnakeCLEF2023-large_size/" # train imgs. path
ADD_TRAIN_DATA_DIR = "/HMP/" # add. train imgs. path
VAL_DATA_DIR = "/SnakeCLEF2023-large_size/" # val imgs. path

TRAINDATA_CONFIG = "/SnakeCLEF2023-TrainMetadata-iNat.csv"
ADD_TRAINDATA_CONFIG = "/SnakeCLEF2023-TrainMetadata-HM.csv"
VALIDDATA_CONFIG = "/SnakeCLEF2023-ValMetadata.csv"

MISSING_FILES = "../missing_train_data.csv" # csv with missing img. files that will be filtered out

CCM = "../code_class_mapping_obid.csv" # csv to metadata code to snake species dist.


NUM_CLASSES = 1784

################## Hyperparameters ########################
NUM_EPOCHS = 40
WARMUP_EPOCHS = 0
RESUME_EPOCH = 14 # resume model, optimizer from epoch 14 of experiment 3, checkpoint files need to be copied to the MODEL_DIR folder 


LEARNING_RATE = {
    'cnn': 1e-05,
    'embeddings': 1e-04,
    'classifier': 1e-04,
}

BATCH_SIZE = {
    'train': 32, 
    'valid': 48, 
    'grad_acc': 4, # gradient acc. steps with 'train' of batch sizes, global batch size = 'grad_acc' * 'train'
}

BATCH_SIZE_AFTER_WARMUP = {
    'train': 32, 
    'valid': 48, 
    'grad_acc': 4, # gradient acc. steps with 'train' of batch sizes, global batch size = 'grad_acc' * 'train'
}

TRANSFORMS = {
    'IMAGE_SIZE_TRAIN': 544,
    'IMAGE_SIZE_VAL': 544,
    'RandAug' : {
        'm': 7,
        'n': 2
    }
}


# ############# Focal Loss ####################
FOCAL_LOSS = {
    'class_dist': pickle.load(open("../classDist_HMP_missedRemoved.p", "rb"))['counts'], # snake species frequency obtained on observation_id level taken into account missing observation_id of missing image files
    'gamma': 0.5, 
}


############# Checkpoints ####################
CHECKPOINTS = {
    'fe_cnn': None,
    'model': None,
    'optimizer': None,
    'scaler': None,
    }

# ####### Embedding Token Mappings ########################
META_SIZES = {'endemic': 2, 'code': 212}
EMBEDDING_SIZES = {'endemic': 64, 'code': 64}

CODE_TOKENS = pickle.load(open("../meta_code_tokens.p", "rb"))
ENDEMIC_TOKENS = pickle.load(open("../meta_endemic_tokens.p", "rb"))

################### WandB ##################
WANDB = True

if WANDB:
    wandb.init(
        entity="snakeclef2023", # our team at wandb

        # set the wandb project where this run will be logged
        project="exp4", # -> define sub-projects here, e.g. experiments with MetaFormer or CNNs...

        # define a name for this run
        name="focal05es_arcloss",

        # track all the used hyperparameters here, config is just a dict object so any key:value pairs are possible
        config={
            "learning_rate": LEARNING_RATE,
            "focal_loss": FOCAL_LOSS,
            "architecture": "convnextv2_base.fcmae_ft_in22k_in1k_384",
            "pretrained": "iNat21",
            "dataset": f"snakeclef2023, additional train data: {True if ADD_TRAINDATA_CONFIG else False}",
            "epochs": NUM_EPOCHS,
            "transforms": TRANSFORMS,
            "checkpoints": CHECKPOINTS,
            "model_dir": MODEL_DIR
            # ... any other hyperparameter that is necessary to reproduce the result
        },
        save_code=True, # save the script file as backup
        dir=MODEL_DIR # locally folder where wandb log files are saved
    )




##################### Dataset & AugTransforms #####################################
# ### dataset & loaders
class SnakeTrainDataset(Dataset):
    def __init__(self, data, ccm, transform=None):
        self.data = data
        self.transform = transform # Image augmentation pipeline
        self.code_class_mapping = ccm
        self.code_tokens = CODE_TOKENS
        self.endemic_tokens = ENDEMIC_TOKENS

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index):
        obj = self.data.iloc[index] # get instance
        label = obj.class_id # get label
        code = obj.code if obj.code in self.code_tokens.keys() else "unknown"
        endemic = obj.endemic if obj.endemic in self.endemic_tokens.keys() else False # get endemic metadata

        img = Image.open(obj.image_path).convert("RGB") # load image
        ccm = torch.tensor(self.code_class_mapping[code].to_numpy()) # code class mapping
        meta = torch.tensor([self.code_tokens[code], self.endemic_tokens[endemic]]) # metadata tokens

        # img. augmentation
        img = self.transform(img)

        return (img, label, ccm, meta)


# valid data preprocessing pipeline
def get_val_preprocessing(img_size):
    print(f'IMG_SIZE_VAL: {img_size}')
    return transforms.Compose([
                transforms.Resize(int(img_size * 1.25)), # Expand IMAGE_SIZE before random crop
                transforms.Compose([
                    transforms.FiveCrop((img_size, img_size)), # this is a list of PIL Images
                    transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])) # returns a 4D tensor
                ]),
                transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
            ])

class IdentityTransform:
    def __call__(self, x):
        return x


# train data augmentation/ preprocessing pipeline
def get_train_augmentation_preprocessing(img_size, rand_aug=False):
    print(f'IMG_SIZE_TRAIN: {img_size}, RandAug: {rand_aug}')
    return transforms.Compose([
                transforms.Resize(int(img_size * 1.25)), # Expand IMAGE_SIZE before random crop
                transforms.RandomHorizontalFlip(p=0.5),
                transforms.RandomVerticalFlip(p=0.5),
                transforms.RandomCrop((img_size, img_size)), # Random Crop to IMAGE_SIZE
                transforms.RandAugment(num_ops=TRANSFORMS['RandAug']['n'], magnitude=TRANSFORMS['RandAug']['m']) if rand_aug else IdentityTransform(),
                transforms.ToTensor(),
                transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
            ])


def get_datasets(train_transfroms, val_transforms):
    # load CSVs
    nan_values = ['', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NULL', 'NaN', 'n/a', 'nan', 'null']
    train_data = pd.read_csv(TRAINDATA_CONFIG, na_values=nan_values, keep_default_na=False)
    missing_train_data = pd.read_csv(MISSING_FILES, na_values=nan_values, keep_default_na=False)
    valid_data = pd.read_csv(VALIDDATA_CONFIG, na_values=nan_values, keep_default_na=False)

    # delete missing files of train data table
    train_data = pd.merge(train_data, missing_train_data, how='outer', indicator=True)
    train_data = train_data.loc[train_data._merge == 'left_only', ["observation_id","endemic","binomial_name","code","image_path","class_id","subset"]]

    # add image path
    train_data["image_path"] = TRAIN_DATA_DIR + train_data['image_path']
    valid_data["image_path"] = VAL_DATA_DIR + valid_data['image_path']

    # add additional data
    if ADD_TRAINDATA_CONFIG:
        add_train_data = pd.read_csv(ADD_TRAINDATA_CONFIG, na_values=nan_values, keep_default_na=False)
        add_train_data["image_path"] = ADD_TRAIN_DATA_DIR + add_train_data['image_path']
        train_data = pd.concat([train_data, add_train_data], axis=0)

    # limit data size
    #train_data = train_data.head(1000)
    #valid_data = valid_data.head(1000)
    print(f'train data shape: {train_data.shape}')

    # shuffle
    train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True)
    valid_data = valid_data.sample(frac=1, random_state=1).reset_index(drop=True)

    # load transposed version of CCM table
    ccm = pd.read_csv(CCM, na_values=nan_values, keep_default_na=False)

    # create datasets
    train_dataset = SnakeTrainDataset(train_data, ccm, transform=train_transfroms)
    valid_dataset = SnakeTrainDataset(valid_data, ccm, transform=val_transforms)

    return train_dataset, valid_dataset#, TCLASS_WEIGHTS, VCLASS_WEIGHTS


def get_dataloaders(imgsize_train, imgsize_val, rand_aug):
    # get train, valid augmentation & preprocessing pipelines
    train_aug_preprocessing = get_train_augmentation_preprocessing(imgsize_train, rand_aug)
    val_preprocessing = get_val_preprocessing(imgsize_val)
    # prepare the datasets
    train_dataset, valid_dataset = get_datasets(train_transfroms=train_aug_preprocessing, val_transforms=val_preprocessing)
    train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE['train'], num_workers=6, drop_last=True, pin_memory=True)
    valid_loader = DataLoader(dataset=valid_dataset, shuffle=False, batch_size=BATCH_SIZE['valid'], num_workers=6, drop_last=False, pin_memory=True)

    return train_loader, valid_loader


# #################### plot train history #########################

def plot_history(logs):
    fig, ax = plt.subplots(3, 1, figsize=(8, 12))

    ax[0].plot(logs['loss'], label="train data")
    ax[0].plot(logs['val_loss'], label="valid data")
    ax[0].legend(loc="best")
    ax[0].set_ylabel("loss")
    ax[0].set_ylim([0, -np.log(1/NUM_CLASSES)])
    #ax[0].set_xlabel("epochs")
    ax[0].set_title("train- vs. valid loss")

    ax[1].plot(logs['acc'], label="train data")
    ax[1].plot(logs['val_acc'], label="valid data")
    ax[1].legend(loc="best")
    ax[1].set_ylabel("accuracy")
    ax[1].set_ylim([0, 1.01])
    #ax[1].set_xlabel("epochs")
    ax[1].set_title("train- vs. valid accuracy")

    ax[2].plot(logs['f1'], label="train data")
    ax[2].plot(logs['val_f1'], label="valid data")
    ax[2].legend(loc="best")
    ax[2].set_ylabel("f1")
    ax[2].set_ylim([0, 1.01])
    ax[2].set_xlabel("epochs")
    ax[2].set_title("train- vs. valid f1")

    fig.savefig(f'{MODEL_DIR}model_history.svg', dpi=150, format="svg")
    plt.show()

#################### Focal Loss ##################################
class FocalLoss(nn.Module):
    '''
    Multi-class Focal Loss
    '''
    def __init__(self, gamma, class_dist=None, reduction='mean', device='cuda'):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        #self.weight = torch.tensor(1.0 / class_dist, dtype=torch.float32, device=device) if class_dist is not None else torch.ones(NUM_CLASSES, device=device) # inverse class frequency weighting
        self.weight = torch.tensor((1.0 - 0.999) / (1.0 - 0.999**class_dist), dtype=torch.float32, device=device) if class_dist is not None else torch.ones(NUM_CLASSES, device=device) # "effectiv number of samples" weighting
        self.reduction = reduction

    def forward(self, inputs, targets):
        """
        input: [N, C], float32
        target: [N, ], int64
        """
        logpt = torch.nn.functional.log_softmax(inputs, dim=1)
        pt = torch.exp(logpt)
        logpt = (1-pt)**self.gamma * logpt
        loss = torch.nn.functional.nll_loss(logpt, targets, weight=self.weight, reduction=self.reduction)
        return loss


# #################### Model #####################################

class FeatureExtractor(nn.Module):
    def __init__(self):
        super(FeatureExtractor, self).__init__()
        self.conv_backbone = create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=True, num_classes=0, drop_path_rate=0.2)
        if CHECKPOINTS['fe_cnn']:
            self.conv_backbone.load_state_dict(torch.load(CHECKPOINTS['fe_cnn'], map_location='cpu'), strict=True)
            print(f"use FE_CHECKPOINTS: {CHECKPOINTS['fe_cnn']}")
            torch.cuda.empty_cache()

    def forward(self, img):
        conv_features = self.conv_backbone(img)
        return conv_features


class MetaEmbeddings(nn.Module):
    def __init__(self, embedding_sizes: dict, meta_sizes: dict, dropout: float = None):
        super(MetaEmbeddings, self).__init__()
        self.endemic_embedding = nn.Embedding(meta_sizes['endemic'], embedding_sizes['endemic'], max_norm=1.0)
        self.code_embedding = nn.Embedding(meta_sizes['code'], embedding_sizes['code'], max_norm=1.0)

        self.dim_embedding = sum(embedding_sizes.values())
        self.embedding_net = nn.Sequential(
            nn.Linear(in_features=self.dim_embedding, out_features=self.dim_embedding, bias=True),
            nn.GELU(),
            nn.LayerNorm(self.dim_embedding, eps=1e-06),
            nn.Dropout(p=dropout, inplace=False) if dropout else nn.Identity(),
            nn.Linear(in_features=self.dim_embedding, out_features=self.dim_embedding, bias=True),
            nn.GELU(),
            nn.LayerNorm(self.dim_embedding, eps=1e-06),
        )

    def forward(self, meta):
        code_feature = self.code_embedding(meta[:,0])
        endemic_feature = self.endemic_embedding(meta[:,1])

        embeddings = torch.concat([code_feature, endemic_feature], dim=-1)
        embedding_features = self.embedding_net(embeddings)

        return embedding_features


class Classifier(nn.Module):
    def __init__(self, num_classes: int, dim_embeddings: int, dropout: float = None):
        super(Classifier, self).__init__()
        self.dropout = nn.Dropout(p=dropout, inplace=False) if dropout else nn.Identity()
        self.classifier = nn.Linear(in_features=dim_embeddings, out_features=num_classes, bias=True)

    def forward(self, embeddings):
        dropped_feature = self.dropout(embeddings)
        outputs = self.classifier(dropped_feature)

        return outputs


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.feature_extractor = FeatureExtractor()
        self.embedding_net = MetaEmbeddings(embedding_sizes=EMBEDDING_SIZES, meta_sizes=META_SIZES, dropout=0.25)
        self.classifier = Classifier(num_classes=NUM_CLASSES, dim_embeddings=1024+128, dropout=0.25)

    def forward(self, img, meta):
        img_features = self.feature_extractor(img)

        meta_features = self.embedding_net(meta)
        cat_features = torch.concat([img_features, meta_features], dim=-1)
        classifier_outputs = self.classifier(cat_features)
        
        return classifier_outputs, cat_features
    
class LossLayer(nn.Module):
    def __init__(self):
        super(LossLayer, self).__init__()
        self.arcloss = ArcFaceLoss(num_classes=NUM_CLASSES, embedding_size=1024+128, margin=28.6, scale=64)
        self.celoss = FocalLoss(gamma=FOCAL_LOSS['gamma'], class_dist=FOCAL_LOSS['class_dist'])
        
    def forward(self, classifier_outputs, cat_features, labels):
        classifier_loss = self.celoss(classifier_outputs, labels)
        embedding_loss = self.arcloss(cat_features, labels)
        return classifier_loss + embedding_loss


def load_checkpoints(model=None, optimizer=None, scaler=None):
    if CHECKPOINTS['model'] and model is not None:
        model.load_state_dict(torch.load(CHECKPOINTS['model'], map_location='cpu'))
        print(f"use model checkpoints: {CHECKPOINTS['model']}")
    if CHECKPOINTS['optimizer'] and optimizer is not None:
        optimizer.load_state_dict(torch.load(CHECKPOINTS['optimizer'], map_location='cpu'))
        print(f"use optimizer checkpoints: {CHECKPOINTS['optimizer']}")
    if CHECKPOINTS['scaler'] and scaler is not None:
        scaler.load_state_dict(torch.load(CHECKPOINTS['scaler'], map_location='cpu'))
        print(f"use scaler checkpoints: {CHECKPOINTS['scaler']}")
    torch.cuda.empty_cache()

def resume_checkpoints(model=None, optimizer=None, scaler=None):
    if model is not None:
        model.load_state_dict(torch.load(f'{MODEL_DIR}model_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
        print(f"use model checkpoints: {MODEL_DIR}model_epoch{RESUME_EPOCH}.pth")
    if optimizer is not None:
        optimizer.load_state_dict(torch.load(f'{MODEL_DIR}optimizer_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
        print(f"use optimizer checkpoints: {MODEL_DIR}optimizer_epoch{RESUME_EPOCH}.pth")
        
    if scaler is not None:
        scaler.load_state_dict(torch.load(f'{MODEL_DIR}mp_scaler_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
        print(f"use scaler checkpoints: {MODEL_DIR}mp_scaler_epoch{RESUME_EPOCH}.pth")
    torch.cuda.empty_cache()


def resume_logs(logs):
    old_logs = pd.read_csv(f"{MODEL_DIR}train_history.csv")
    for m in list(logs.keys()):
        logs[m].extend(list(old_logs[m].values))

######################## Optimizer #####################################
def get_optm_group(module):
    """
    This long function is unfortunately doing something very simple and is being very defensive:
    We are separating out all parameters of the model into two buckets: those that will experience
    weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
    We are then returning the PyTorch optimizer object.
    """

    # separate out all parameters to those that will and won't experience regularizing weight decay
    decay = set()
    no_decay = set()
    whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d, torch.nn.Conv1d, timm.layers.GlobalResponseNormMlp)
    blacklist_weight_modules = (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.LayerNorm, torch.nn.Embedding)
    for mn, m in module.named_modules():
        for pn, p in m.named_parameters():
            fpn = '%s.%s' % (mn, pn) if mn else pn # full param name

            if pn.endswith('bias'):
                # all biases will not be decayed
                no_decay.add(fpn)
            elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
                # weights of whitelist modules will be weight decayed
                decay.add(fpn)
            elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
                # weights of blacklist modules will NOT be weight decayed
                no_decay.add(fpn)


    # validate that we considered every parameter
    param_dict = {pn: p for pn, p in module.named_parameters()}
    inter_params = decay & no_decay
    union_params = decay | no_decay
    assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
    assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
                                                % (str(param_dict.keys() - union_params), )

    return param_dict, decay, no_decay


def get_warmup_optimizer(model):
    params_group = []
    
    param_dict, decay, no_decay = get_optm_group(model.embedding_net)
    params_group.append({"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.05, 'lr': LEARNING_RATE['embeddings']})
    params_group.append({"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0, 'lr': LEARNING_RATE['embeddings']})

    param_dict, decay, no_decay = get_optm_group(model.classifier)
    params_group.append({"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.05, 'lr': LEARNING_RATE['classifier']})
    params_group.append({"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0, 'lr': LEARNING_RATE['classifier']})
    
    optimizer = torch.optim.AdamW(params_group)
    return optimizer


def get_after_warmup_optimizer(model, old_opt):
    new_opt = create_optimizer_v2(model.feature_extractor.conv_backbone, opt='adamw', filter_bias_and_bn=True, weight_decay=1e-8, layer_decay=0.85, lr=LEARNING_RATE['cnn'])
    
    # add old param groups
    for group in old_opt.param_groups:
        new_opt.add_param_group(group)
        
    return new_opt


# #################### Model Warmup #####################################

def warmup_start(model):
    # freeze model feature_extractor.conv_backbone during warmup
    for i, (param_name, param) in enumerate(model.feature_extractor.conv_backbone.named_parameters()):
        param.requires_grad = False
    print(f'--> freeze feature_extractor.conv_backbone during warmup phase')

def warmup_end(model):
    # unfreeze feature_extractor.conv_backbone during warmup
    for i, (param_name, param) in enumerate(model.feature_extractor.conv_backbone.named_parameters()):
        param.requires_grad = True
    print(f'--> unfreeze feature_extractor.conv_backbone after warmup phase')


# #################### Train Loop #####################################

# ### train
def main():
    device = torch.device(f'cuda:1')
    torch.cuda.set_device(device)

    # prepare the datasets
    train_loader, valid_loader = get_dataloaders(imgsize_train=TRANSFORMS['IMAGE_SIZE_TRAIN'],
                                                 imgsize_val=TRANSFORMS['IMAGE_SIZE_VAL'],
                                                 rand_aug=True)

    # instantiate the model
    model = Model().to(device)
    #load_checkpoints(model=model)
    if RESUME_EPOCH > 0:
        resume_checkpoints(model=model)
    ema_model = ModelEmaV2(model, decay=0.9998, device=device)
    #warmup_start(model)
    
    # Optimizer & Schedules & early stopping
    optimizer = get_warmup_optimizer(model)
    scaler = GradScaler()
    #load_checkpoints(optimizer=optimizer, scaler=scaler)
    if RESUME_EPOCH > 0:
        optimizer = get_after_warmup_optimizer(model, optimizer) if RESUME_EPOCH > WARMUP_EPOCHS else optimizer
        resume_checkpoints(optimizer=optimizer, scaler=scaler)
    
    loss_fn = LossLayer().to(device) 
    optimizer.add_param_group({"params": loss_fn.arcloss.parameters(), "weight_decay": 0.0, 'lr': LEARNING_RATE['classifier']})

    # running metrics during training
    loss_metric = MeanMetric().to(device)
    metrics = MetricCollection(metrics={
        'acc': MulticlassAccuracy(num_classes=NUM_CLASSES, average='macro'),
        'top3_acc': MulticlassAccuracy(num_classes=NUM_CLASSES, average='macro', top_k=3),
        'f1': MulticlassF1Score(num_classes=NUM_CLASSES, average='macro')  
    }).to(device)
    metric_ccm = MulticlassF1Score(num_classes=NUM_CLASSES, average='macro').to(device)     

    # start time of trainig
    start_training = time.perf_counter()
    # create log dict
    logs = {'loss': [], 'acc': [], 'acc_top3': [], 'f1': [], 'f1country': [], 'val_loss': [], 'val_acc': [], 'val_acc_top3': [], 'val_f1': [], 'val_f1country': []}
    if RESUME_EPOCH > 0:
        resume_logs(logs)

    #iterate over epochs
    start_epoch = RESUME_EPOCH+1 if RESUME_EPOCH > 0 else 0
    for epoch in range(start_epoch, NUM_EPOCHS):
        # start time of epoch
        epoch_start = time.perf_counter()
        print(f'Epoch {epoch+1}/{NUM_EPOCHS}')
        
        ######################## toggle warmup ########################################
        if (epoch) == WARMUP_EPOCHS:
            warmup_end(model)
            optimizer = get_after_warmup_optimizer(model, optimizer)
            global BATCH_SIZE
            BATCH_SIZE = BATCH_SIZE_AFTER_WARMUP
            train_loader, valid_loader = get_dataloaders(imgsize_train=TRANSFORMS['IMAGE_SIZE_TRAIN'],
                                                 imgsize_val=TRANSFORMS['IMAGE_SIZE_VAL'],
                                                 rand_aug=True)
            
        elif (epoch) < WARMUP_EPOCHS:
            print(f'--> Warm Up {epoch+1}/{WARMUP_EPOCHS}')

        ############################## train phase ####################################
        model.train()

        # zero the parameter gradients
        optimizer.zero_grad(set_to_none=True)
        
        # grad acc loss divider
        loss_div = torch.tensor(BATCH_SIZE['grad_acc'], dtype=torch.float16, device=device, requires_grad=False) if BATCH_SIZE['grad_acc'] != 0 else torch.tensor(1.0, dtype=torch.float16, device=device, requires_grad=False)
        
        # iterate over training batches
        for batch_idx, (inputs, labels, ccm, meta) in enumerate(train_loader):
            inputs = inputs.to(device, non_blocking=True)
            meta = meta.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)
            ccm = ccm.to(device, non_blocking=True) 
            
            # forward with mixed precision
            with autocast(device_type='cuda', dtype=torch.float16):
                outputs, embeddings = model(inputs, meta) 
                loss = loss_fn(outputs, embeddings, labels) / loss_div

            # loss backward 
            scaler.scale(loss).backward()
            
            # Compute metrics
            loss_metric.update((loss * loss_div).detach())
            
            preds = outputs.softmax(dim=-1).detach()
            metrics.update(preds, labels)
            metric_ccm.update(preds * ccm, labels)
            
            ############################ grad acc ##############################
            if (batch_idx+1) % BATCH_SIZE['grad_acc'] == 0:
                #scaler.unscale_(optimizer)
                #torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # optimize with gradient clipping to 1 with mixed precision
                scaler.step(optimizer)
                scaler.update()
                # zero the parameter gradients
                optimizer.zero_grad(set_to_none=True)
                # update ema model
                ema_model.update(model)
  

        # compute, sync & reset metrics for validation
        epoch_loss = loss_metric.compute()
        epoch_metrics = metrics.compute()
        epoch_metric_ccm = metric_ccm.compute()
        
        loss_metric.reset()
        metrics.reset()
        metric_ccm.reset()
        
        # Append metric results to logs
        logs['loss'].append(epoch_loss.cpu().item())
        logs['acc'].append(epoch_metrics['acc'].cpu().item())
        logs['acc_top3'].append(epoch_metrics['top3_acc'].cpu().item())
        logs['f1'].append(epoch_metrics['f1'].cpu().item())
        logs['f1country'].append(epoch_metric_ccm.detach().cpu().item())
        
        print(f"loss: {logs['loss'][epoch]:.5f}, acc: {logs['acc'][epoch]:.5f}, acc_top3: {logs['acc_top3'][epoch]:.5f}, f1: {logs['f1'][epoch]:.5f}, f1country: {logs['f1country'][epoch]:.5f}", end=' || ')
    
        # zero the parameter gradients
        optimizer.zero_grad(set_to_none=True)
        
        del inputs, labels, ccm, meta, preds, outputs, loss, loss_div, epoch_loss, epoch_metrics, epoch_metric_ccm
        torch.cuda.empty_cache()

        ############################## valid phase ####################################
        with torch.no_grad():
            model.eval()

            # iterate over validation batches
            for (inputs, labels, ccm, meta) in valid_loader:
                inputs = inputs.to(device, non_blocking=True)
                inputs = inputs.view(-1, 3, TRANSFORMS['IMAGE_SIZE_VAL'], TRANSFORMS['IMAGE_SIZE_VAL'])
                meta = meta.to(device, non_blocking=True)
                meta = torch.repeat_interleave(meta, repeats=5, dim=0)
                labels = labels.to(device, non_blocking=True)
                ccm = ccm.to(device, non_blocking=True)
                
                # forward with mixed precision
                with autocast(device_type='cuda', dtype=torch.float16):
                    outputs, embeddings = model(inputs, meta)
                    outputs = outputs.view(-1, 5, NUM_CLASSES).mean(1)
                    embeddings = embeddings.view(-1, 5, 1024+128).mean(1)
                    loss = loss_fn(outputs, embeddings, labels)

                # Compute metrics
                loss_metric.update(loss.detach())

                preds = outputs.softmax(dim=-1).detach()
                metrics.update(preds, labels)
                metric_ccm.update(preds * ccm, labels)

            # compute, sync & reset metrics for validation
            epoch_loss = loss_metric.compute()
            epoch_metrics = metrics.compute()
            epoch_metric_ccm = metric_ccm.compute()

            loss_metric.reset()
            metrics.reset()
            metric_ccm.reset()

            # Append metric results to logs
            logs['val_loss'].append(epoch_loss.cpu().item())
            logs['val_acc'].append(epoch_metrics['acc'].cpu().item())
            logs['val_acc_top3'].append(epoch_metrics['top3_acc'].cpu().item())
            logs['val_f1'].append(epoch_metrics['f1'].cpu().item())
            logs['val_f1country'].append(epoch_metric_ccm.detach().cpu().item())
                                  
            print(f"val_loss: {logs['val_loss'][epoch]:.5f}, val_acc: {logs['val_acc'][epoch]:.5f}, val_acc_top3: {logs['val_acc_top3'][epoch]:.5f}, val_f1: {logs['val_f1'][epoch]:.5f}, val_f1country: {logs['val_f1country'][epoch]:.5f}", end=' || ')
            
        del inputs, labels, ccm, meta, preds, outputs, loss, epoch_loss, epoch_metrics, epoch_metric_ccm
        torch.cuda.empty_cache()
                                  
        # save logs as csv
        logs_df = pd.DataFrame(logs)
        logs_df.to_csv(f'{MODEL_DIR}train_history.csv', index_label='epoch', sep=',', encoding='utf-8')

        if WANDB:
            # at the end of each epoch, log anything you want to log for that epoch
            wandb.log(
                {k:v[epoch] for k,v in logs.items()}, # e.g. log each metric value for the current epoch in our defined logs dict
                step=epoch # epoch index for wandb
            )

        #save trained model for each epoch
        torch.save(model.state_dict(), f'{MODEL_DIR}model_epoch{epoch}.pth')
        torch.save(ema_model.module.state_dict(), f'{MODEL_DIR}ema_model_epoch{epoch}.pth')
        torch.save(optimizer.state_dict(), f'{MODEL_DIR}optimizer_epoch{epoch}.pth')
        torch.save(scaler.state_dict(), f'{MODEL_DIR}mp_scaler_epoch{epoch}.pth')
        torch.save(loss_fn.arcloss.state_dict(), f'{MODEL_DIR}arcloss_epoch{epoch}.pth')
        
        # end time of epoch
        epoch_end = time.perf_counter()
        print(f"epoch runtime: {epoch_end-epoch_start:5.3f} sec.")
        
        del logs_df, epoch_start, epoch_end
        torch.cuda.empty_cache()
                
    ################################## EMA Model Validation ################################  
    del model
    torch.cuda.empty_cache()
    
    ema_net = ema_model.module
    ema_net.eval()
    
    with torch.no_grad():
        # iterate over validation batches
        for (inputs, labels, ccm, meta) in valid_loader:
            inputs = inputs.to(device, non_blocking=True)
            inputs = inputs.view(-1, 3, TRANSFORMS['IMAGE_SIZE_VAL'], TRANSFORMS['IMAGE_SIZE_VAL'])
            meta = meta.to(device, non_blocking=True)
            meta = torch.repeat_interleave(meta, repeats=5, dim=0)
            labels = labels.to(device, non_blocking=True)
            ccm = ccm.to(device, non_blocking=True)

            # forward with mixed precision
            with autocast(device_type='cuda', dtype=torch.float16):                   
                outputs, embeddings = ema_net(inputs, meta)
                outputs = outputs.view(-1, 5, NUM_CLASSES).mean(1)
                embeddings = embeddings.view(-1, 5, 1024+128).mean(1)
                loss = loss_fn(outputs, embeddings, labels)

            # Compute metrics
            loss_metric.update(loss.detach())

            preds = outputs.softmax(dim=-1).detach()
            metrics.update(preds, labels)
            metric_ccm.update(preds * ccm, labels)

    # compute, sync & reset metrics for validation
    epoch_loss = loss_metric.compute()
    epoch_metrics = metrics.compute()
    epoch_metric_ccm = metric_ccm.compute()

    loss_metric.reset()
    metrics.reset()
    metric_ccm.reset()

    print(f"ema_loss: {epoch_loss.cpu().item():.5f}, ema_acc: {epoch_metrics['acc'].cpu().item():.5f}, ema_acc_top3: {epoch_metrics['top3_acc'].cpu().item():.5f}, ema_f1: {epoch_metrics['f1'].cpu().item():.5f}, ema_f1country: {epoch_metric_ccm.detach().cpu().item():.5f}") 
    
    with open(f'{MODEL_DIR}ema_results.txt', 'w') as f:
        print(f"ema_loss: {epoch_loss.cpu().item():.5f}, ema_acc: {epoch_metrics['acc'].cpu().item():.5f}, ema_acc_top3: {epoch_metrics['top3_acc'].cpu().item():.5f}, ema_f1: {epoch_metrics['f1'].cpu().item():.5f}, ema_f1country: {epoch_metric_ccm.detach().cpu().item():.5f}", file=f) 

    plot_history(logs)
    # end time of trainig
    end_training = time.perf_counter()
    print(f'Training succeeded in {(end_training - start_training):5.3f}s')

    if WANDB:
        wandb.finish()


if __name__=="__main__":
    main()