File size: 33,490 Bytes
ce0919b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
import os, time, pickle, shutil
import pandas as pd
import numpy as np
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import GradScaler
from torch import autocast
import torchvision.transforms as transforms
import timm
from timm.models import create_model
from timm.utils import ModelEmaV2
from timm.optim import create_optimizer_v2
from torchmetrics import MeanMetric
from torchmetrics.classification import MulticlassAccuracy, MulticlassF1Score
from torchmetrics import MetricCollection
from pytorch_metric_learning.losses import ArcFaceLoss
import wandb
import matplotlib.pyplot as plt
# ### parameters
################## Settings #############################
#os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
torch.backends.cudnn.benchmark = True
################## Data Paths ##########################
MODEL_DIR = "./convnext2b_metaEmbedding_focal05es_arcloss/"
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
shutil.copyfile('./convnext2b_exp4_meta_embedding_focalarcloss.py', f'{MODEL_DIR}convnext2b_exp4_meta_embedding_focalarcloss.py')
TRAIN_DATA_DIR = "/SnakeCLEF2023-large_size/" # train imgs. path
ADD_TRAIN_DATA_DIR = "/HMP/" # add. train imgs. path
VAL_DATA_DIR = "/SnakeCLEF2023-large_size/" # val imgs. path
TRAINDATA_CONFIG = "/SnakeCLEF2023-TrainMetadata-iNat.csv"
ADD_TRAINDATA_CONFIG = "/SnakeCLEF2023-TrainMetadata-HM.csv"
VALIDDATA_CONFIG = "/SnakeCLEF2023-ValMetadata.csv"
MISSING_FILES = "../missing_train_data.csv" # csv with missing img. files that will be filtered out
CCM = "../code_class_mapping_obid.csv" # csv to metadata code to snake species dist.
NUM_CLASSES = 1784
################## Hyperparameters ########################
NUM_EPOCHS = 40
WARMUP_EPOCHS = 0
RESUME_EPOCH = 14 # resume model, optimizer from epoch 14 of experiment 3, checkpoint files need to be copied to the MODEL_DIR folder
LEARNING_RATE = {
'cnn': 1e-05,
'embeddings': 1e-04,
'classifier': 1e-04,
}
BATCH_SIZE = {
'train': 32,
'valid': 48,
'grad_acc': 4, # gradient acc. steps with 'train' of batch sizes, global batch size = 'grad_acc' * 'train'
}
BATCH_SIZE_AFTER_WARMUP = {
'train': 32,
'valid': 48,
'grad_acc': 4, # gradient acc. steps with 'train' of batch sizes, global batch size = 'grad_acc' * 'train'
}
TRANSFORMS = {
'IMAGE_SIZE_TRAIN': 544,
'IMAGE_SIZE_VAL': 544,
'RandAug' : {
'm': 7,
'n': 2
}
}
# ############# Focal Loss ####################
FOCAL_LOSS = {
'class_dist': pickle.load(open("../classDist_HMP_missedRemoved.p", "rb"))['counts'], # snake species frequency obtained on observation_id level taken into account missing observation_id of missing image files
'gamma': 0.5,
}
############# Checkpoints ####################
CHECKPOINTS = {
'fe_cnn': None,
'model': None,
'optimizer': None,
'scaler': None,
}
# ####### Embedding Token Mappings ########################
META_SIZES = {'endemic': 2, 'code': 212}
EMBEDDING_SIZES = {'endemic': 64, 'code': 64}
CODE_TOKENS = pickle.load(open("../meta_code_tokens.p", "rb"))
ENDEMIC_TOKENS = pickle.load(open("../meta_endemic_tokens.p", "rb"))
################### WandB ##################
WANDB = True
if WANDB:
wandb.init(
entity="snakeclef2023", # our team at wandb
# set the wandb project where this run will be logged
project="exp4", # -> define sub-projects here, e.g. experiments with MetaFormer or CNNs...
# define a name for this run
name="focal05es_arcloss",
# track all the used hyperparameters here, config is just a dict object so any key:value pairs are possible
config={
"learning_rate": LEARNING_RATE,
"focal_loss": FOCAL_LOSS,
"architecture": "convnextv2_base.fcmae_ft_in22k_in1k_384",
"pretrained": "iNat21",
"dataset": f"snakeclef2023, additional train data: {True if ADD_TRAINDATA_CONFIG else False}",
"epochs": NUM_EPOCHS,
"transforms": TRANSFORMS,
"checkpoints": CHECKPOINTS,
"model_dir": MODEL_DIR
# ... any other hyperparameter that is necessary to reproduce the result
},
save_code=True, # save the script file as backup
dir=MODEL_DIR # locally folder where wandb log files are saved
)
##################### Dataset & AugTransforms #####################################
# ### dataset & loaders
class SnakeTrainDataset(Dataset):
def __init__(self, data, ccm, transform=None):
self.data = data
self.transform = transform # Image augmentation pipeline
self.code_class_mapping = ccm
self.code_tokens = CODE_TOKENS
self.endemic_tokens = ENDEMIC_TOKENS
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
obj = self.data.iloc[index] # get instance
label = obj.class_id # get label
code = obj.code if obj.code in self.code_tokens.keys() else "unknown"
endemic = obj.endemic if obj.endemic in self.endemic_tokens.keys() else False # get endemic metadata
img = Image.open(obj.image_path).convert("RGB") # load image
ccm = torch.tensor(self.code_class_mapping[code].to_numpy()) # code class mapping
meta = torch.tensor([self.code_tokens[code], self.endemic_tokens[endemic]]) # metadata tokens
# img. augmentation
img = self.transform(img)
return (img, label, ccm, meta)
# valid data preprocessing pipeline
def get_val_preprocessing(img_size):
print(f'IMG_SIZE_VAL: {img_size}')
return transforms.Compose([
transforms.Resize(int(img_size * 1.25)), # Expand IMAGE_SIZE before random crop
transforms.Compose([
transforms.FiveCrop((img_size, img_size)), # this is a list of PIL Images
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])) # returns a 4D tensor
]),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
class IdentityTransform:
def __call__(self, x):
return x
# train data augmentation/ preprocessing pipeline
def get_train_augmentation_preprocessing(img_size, rand_aug=False):
print(f'IMG_SIZE_TRAIN: {img_size}, RandAug: {rand_aug}')
return transforms.Compose([
transforms.Resize(int(img_size * 1.25)), # Expand IMAGE_SIZE before random crop
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomCrop((img_size, img_size)), # Random Crop to IMAGE_SIZE
transforms.RandAugment(num_ops=TRANSFORMS['RandAug']['n'], magnitude=TRANSFORMS['RandAug']['m']) if rand_aug else IdentityTransform(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
def get_datasets(train_transfroms, val_transforms):
# load CSVs
nan_values = ['', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NULL', 'NaN', 'n/a', 'nan', 'null']
train_data = pd.read_csv(TRAINDATA_CONFIG, na_values=nan_values, keep_default_na=False)
missing_train_data = pd.read_csv(MISSING_FILES, na_values=nan_values, keep_default_na=False)
valid_data = pd.read_csv(VALIDDATA_CONFIG, na_values=nan_values, keep_default_na=False)
# delete missing files of train data table
train_data = pd.merge(train_data, missing_train_data, how='outer', indicator=True)
train_data = train_data.loc[train_data._merge == 'left_only', ["observation_id","endemic","binomial_name","code","image_path","class_id","subset"]]
# add image path
train_data["image_path"] = TRAIN_DATA_DIR + train_data['image_path']
valid_data["image_path"] = VAL_DATA_DIR + valid_data['image_path']
# add additional data
if ADD_TRAINDATA_CONFIG:
add_train_data = pd.read_csv(ADD_TRAINDATA_CONFIG, na_values=nan_values, keep_default_na=False)
add_train_data["image_path"] = ADD_TRAIN_DATA_DIR + add_train_data['image_path']
train_data = pd.concat([train_data, add_train_data], axis=0)
# limit data size
#train_data = train_data.head(1000)
#valid_data = valid_data.head(1000)
print(f'train data shape: {train_data.shape}')
# shuffle
train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True)
valid_data = valid_data.sample(frac=1, random_state=1).reset_index(drop=True)
# load transposed version of CCM table
ccm = pd.read_csv(CCM, na_values=nan_values, keep_default_na=False)
# create datasets
train_dataset = SnakeTrainDataset(train_data, ccm, transform=train_transfroms)
valid_dataset = SnakeTrainDataset(valid_data, ccm, transform=val_transforms)
return train_dataset, valid_dataset#, TCLASS_WEIGHTS, VCLASS_WEIGHTS
def get_dataloaders(imgsize_train, imgsize_val, rand_aug):
# get train, valid augmentation & preprocessing pipelines
train_aug_preprocessing = get_train_augmentation_preprocessing(imgsize_train, rand_aug)
val_preprocessing = get_val_preprocessing(imgsize_val)
# prepare the datasets
train_dataset, valid_dataset = get_datasets(train_transfroms=train_aug_preprocessing, val_transforms=val_preprocessing)
train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE['train'], num_workers=6, drop_last=True, pin_memory=True)
valid_loader = DataLoader(dataset=valid_dataset, shuffle=False, batch_size=BATCH_SIZE['valid'], num_workers=6, drop_last=False, pin_memory=True)
return train_loader, valid_loader
# #################### plot train history #########################
def plot_history(logs):
fig, ax = plt.subplots(3, 1, figsize=(8, 12))
ax[0].plot(logs['loss'], label="train data")
ax[0].plot(logs['val_loss'], label="valid data")
ax[0].legend(loc="best")
ax[0].set_ylabel("loss")
ax[0].set_ylim([0, -np.log(1/NUM_CLASSES)])
#ax[0].set_xlabel("epochs")
ax[0].set_title("train- vs. valid loss")
ax[1].plot(logs['acc'], label="train data")
ax[1].plot(logs['val_acc'], label="valid data")
ax[1].legend(loc="best")
ax[1].set_ylabel("accuracy")
ax[1].set_ylim([0, 1.01])
#ax[1].set_xlabel("epochs")
ax[1].set_title("train- vs. valid accuracy")
ax[2].plot(logs['f1'], label="train data")
ax[2].plot(logs['val_f1'], label="valid data")
ax[2].legend(loc="best")
ax[2].set_ylabel("f1")
ax[2].set_ylim([0, 1.01])
ax[2].set_xlabel("epochs")
ax[2].set_title("train- vs. valid f1")
fig.savefig(f'{MODEL_DIR}model_history.svg', dpi=150, format="svg")
plt.show()
#################### Focal Loss ##################################
class FocalLoss(nn.Module):
'''
Multi-class Focal Loss
'''
def __init__(self, gamma, class_dist=None, reduction='mean', device='cuda'):
super(FocalLoss, self).__init__()
self.gamma = gamma
#self.weight = torch.tensor(1.0 / class_dist, dtype=torch.float32, device=device) if class_dist is not None else torch.ones(NUM_CLASSES, device=device) # inverse class frequency weighting
self.weight = torch.tensor((1.0 - 0.999) / (1.0 - 0.999**class_dist), dtype=torch.float32, device=device) if class_dist is not None else torch.ones(NUM_CLASSES, device=device) # "effectiv number of samples" weighting
self.reduction = reduction
def forward(self, inputs, targets):
"""
input: [N, C], float32
target: [N, ], int64
"""
logpt = torch.nn.functional.log_softmax(inputs, dim=1)
pt = torch.exp(logpt)
logpt = (1-pt)**self.gamma * logpt
loss = torch.nn.functional.nll_loss(logpt, targets, weight=self.weight, reduction=self.reduction)
return loss
# #################### Model #####################################
class FeatureExtractor(nn.Module):
def __init__(self):
super(FeatureExtractor, self).__init__()
self.conv_backbone = create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=True, num_classes=0, drop_path_rate=0.2)
if CHECKPOINTS['fe_cnn']:
self.conv_backbone.load_state_dict(torch.load(CHECKPOINTS['fe_cnn'], map_location='cpu'), strict=True)
print(f"use FE_CHECKPOINTS: {CHECKPOINTS['fe_cnn']}")
torch.cuda.empty_cache()
def forward(self, img):
conv_features = self.conv_backbone(img)
return conv_features
class MetaEmbeddings(nn.Module):
def __init__(self, embedding_sizes: dict, meta_sizes: dict, dropout: float = None):
super(MetaEmbeddings, self).__init__()
self.endemic_embedding = nn.Embedding(meta_sizes['endemic'], embedding_sizes['endemic'], max_norm=1.0)
self.code_embedding = nn.Embedding(meta_sizes['code'], embedding_sizes['code'], max_norm=1.0)
self.dim_embedding = sum(embedding_sizes.values())
self.embedding_net = nn.Sequential(
nn.Linear(in_features=self.dim_embedding, out_features=self.dim_embedding, bias=True),
nn.GELU(),
nn.LayerNorm(self.dim_embedding, eps=1e-06),
nn.Dropout(p=dropout, inplace=False) if dropout else nn.Identity(),
nn.Linear(in_features=self.dim_embedding, out_features=self.dim_embedding, bias=True),
nn.GELU(),
nn.LayerNorm(self.dim_embedding, eps=1e-06),
)
def forward(self, meta):
code_feature = self.code_embedding(meta[:,0])
endemic_feature = self.endemic_embedding(meta[:,1])
embeddings = torch.concat([code_feature, endemic_feature], dim=-1)
embedding_features = self.embedding_net(embeddings)
return embedding_features
class Classifier(nn.Module):
def __init__(self, num_classes: int, dim_embeddings: int, dropout: float = None):
super(Classifier, self).__init__()
self.dropout = nn.Dropout(p=dropout, inplace=False) if dropout else nn.Identity()
self.classifier = nn.Linear(in_features=dim_embeddings, out_features=num_classes, bias=True)
def forward(self, embeddings):
dropped_feature = self.dropout(embeddings)
outputs = self.classifier(dropped_feature)
return outputs
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.feature_extractor = FeatureExtractor()
self.embedding_net = MetaEmbeddings(embedding_sizes=EMBEDDING_SIZES, meta_sizes=META_SIZES, dropout=0.25)
self.classifier = Classifier(num_classes=NUM_CLASSES, dim_embeddings=1024+128, dropout=0.25)
def forward(self, img, meta):
img_features = self.feature_extractor(img)
meta_features = self.embedding_net(meta)
cat_features = torch.concat([img_features, meta_features], dim=-1)
classifier_outputs = self.classifier(cat_features)
return classifier_outputs, cat_features
class LossLayer(nn.Module):
def __init__(self):
super(LossLayer, self).__init__()
self.arcloss = ArcFaceLoss(num_classes=NUM_CLASSES, embedding_size=1024+128, margin=28.6, scale=64)
self.celoss = FocalLoss(gamma=FOCAL_LOSS['gamma'], class_dist=FOCAL_LOSS['class_dist'])
def forward(self, classifier_outputs, cat_features, labels):
classifier_loss = self.celoss(classifier_outputs, labels)
embedding_loss = self.arcloss(cat_features, labels)
return classifier_loss + embedding_loss
def load_checkpoints(model=None, optimizer=None, scaler=None):
if CHECKPOINTS['model'] and model is not None:
model.load_state_dict(torch.load(CHECKPOINTS['model'], map_location='cpu'))
print(f"use model checkpoints: {CHECKPOINTS['model']}")
if CHECKPOINTS['optimizer'] and optimizer is not None:
optimizer.load_state_dict(torch.load(CHECKPOINTS['optimizer'], map_location='cpu'))
print(f"use optimizer checkpoints: {CHECKPOINTS['optimizer']}")
if CHECKPOINTS['scaler'] and scaler is not None:
scaler.load_state_dict(torch.load(CHECKPOINTS['scaler'], map_location='cpu'))
print(f"use scaler checkpoints: {CHECKPOINTS['scaler']}")
torch.cuda.empty_cache()
def resume_checkpoints(model=None, optimizer=None, scaler=None):
if model is not None:
model.load_state_dict(torch.load(f'{MODEL_DIR}model_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
print(f"use model checkpoints: {MODEL_DIR}model_epoch{RESUME_EPOCH}.pth")
if optimizer is not None:
optimizer.load_state_dict(torch.load(f'{MODEL_DIR}optimizer_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
print(f"use optimizer checkpoints: {MODEL_DIR}optimizer_epoch{RESUME_EPOCH}.pth")
if scaler is not None:
scaler.load_state_dict(torch.load(f'{MODEL_DIR}mp_scaler_epoch{RESUME_EPOCH}.pth', map_location='cpu'))
print(f"use scaler checkpoints: {MODEL_DIR}mp_scaler_epoch{RESUME_EPOCH}.pth")
torch.cuda.empty_cache()
def resume_logs(logs):
old_logs = pd.read_csv(f"{MODEL_DIR}train_history.csv")
for m in list(logs.keys()):
logs[m].extend(list(old_logs[m].values))
######################## Optimizer #####################################
def get_optm_group(module):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d, torch.nn.Conv1d, timm.layers.GlobalResponseNormMlp)
blacklist_weight_modules = (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in module.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# validate that we considered every parameter
param_dict = {pn: p for pn, p in module.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
return param_dict, decay, no_decay
def get_warmup_optimizer(model):
params_group = []
param_dict, decay, no_decay = get_optm_group(model.embedding_net)
params_group.append({"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.05, 'lr': LEARNING_RATE['embeddings']})
params_group.append({"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0, 'lr': LEARNING_RATE['embeddings']})
param_dict, decay, no_decay = get_optm_group(model.classifier)
params_group.append({"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.05, 'lr': LEARNING_RATE['classifier']})
params_group.append({"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0, 'lr': LEARNING_RATE['classifier']})
optimizer = torch.optim.AdamW(params_group)
return optimizer
def get_after_warmup_optimizer(model, old_opt):
new_opt = create_optimizer_v2(model.feature_extractor.conv_backbone, opt='adamw', filter_bias_and_bn=True, weight_decay=1e-8, layer_decay=0.85, lr=LEARNING_RATE['cnn'])
# add old param groups
for group in old_opt.param_groups:
new_opt.add_param_group(group)
return new_opt
# #################### Model Warmup #####################################
def warmup_start(model):
# freeze model feature_extractor.conv_backbone during warmup
for i, (param_name, param) in enumerate(model.feature_extractor.conv_backbone.named_parameters()):
param.requires_grad = False
print(f'--> freeze feature_extractor.conv_backbone during warmup phase')
def warmup_end(model):
# unfreeze feature_extractor.conv_backbone during warmup
for i, (param_name, param) in enumerate(model.feature_extractor.conv_backbone.named_parameters()):
param.requires_grad = True
print(f'--> unfreeze feature_extractor.conv_backbone after warmup phase')
# #################### Train Loop #####################################
# ### train
def main():
device = torch.device(f'cuda:1')
torch.cuda.set_device(device)
# prepare the datasets
train_loader, valid_loader = get_dataloaders(imgsize_train=TRANSFORMS['IMAGE_SIZE_TRAIN'],
imgsize_val=TRANSFORMS['IMAGE_SIZE_VAL'],
rand_aug=True)
# instantiate the model
model = Model().to(device)
#load_checkpoints(model=model)
if RESUME_EPOCH > 0:
resume_checkpoints(model=model)
ema_model = ModelEmaV2(model, decay=0.9998, device=device)
#warmup_start(model)
# Optimizer & Schedules & early stopping
optimizer = get_warmup_optimizer(model)
scaler = GradScaler()
#load_checkpoints(optimizer=optimizer, scaler=scaler)
if RESUME_EPOCH > 0:
optimizer = get_after_warmup_optimizer(model, optimizer) if RESUME_EPOCH > WARMUP_EPOCHS else optimizer
resume_checkpoints(optimizer=optimizer, scaler=scaler)
loss_fn = LossLayer().to(device)
optimizer.add_param_group({"params": loss_fn.arcloss.parameters(), "weight_decay": 0.0, 'lr': LEARNING_RATE['classifier']})
# running metrics during training
loss_metric = MeanMetric().to(device)
metrics = MetricCollection(metrics={
'acc': MulticlassAccuracy(num_classes=NUM_CLASSES, average='macro'),
'top3_acc': MulticlassAccuracy(num_classes=NUM_CLASSES, average='macro', top_k=3),
'f1': MulticlassF1Score(num_classes=NUM_CLASSES, average='macro')
}).to(device)
metric_ccm = MulticlassF1Score(num_classes=NUM_CLASSES, average='macro').to(device)
# start time of trainig
start_training = time.perf_counter()
# create log dict
logs = {'loss': [], 'acc': [], 'acc_top3': [], 'f1': [], 'f1country': [], 'val_loss': [], 'val_acc': [], 'val_acc_top3': [], 'val_f1': [], 'val_f1country': []}
if RESUME_EPOCH > 0:
resume_logs(logs)
#iterate over epochs
start_epoch = RESUME_EPOCH+1 if RESUME_EPOCH > 0 else 0
for epoch in range(start_epoch, NUM_EPOCHS):
# start time of epoch
epoch_start = time.perf_counter()
print(f'Epoch {epoch+1}/{NUM_EPOCHS}')
######################## toggle warmup ########################################
if (epoch) == WARMUP_EPOCHS:
warmup_end(model)
optimizer = get_after_warmup_optimizer(model, optimizer)
global BATCH_SIZE
BATCH_SIZE = BATCH_SIZE_AFTER_WARMUP
train_loader, valid_loader = get_dataloaders(imgsize_train=TRANSFORMS['IMAGE_SIZE_TRAIN'],
imgsize_val=TRANSFORMS['IMAGE_SIZE_VAL'],
rand_aug=True)
elif (epoch) < WARMUP_EPOCHS:
print(f'--> Warm Up {epoch+1}/{WARMUP_EPOCHS}')
############################## train phase ####################################
model.train()
# zero the parameter gradients
optimizer.zero_grad(set_to_none=True)
# grad acc loss divider
loss_div = torch.tensor(BATCH_SIZE['grad_acc'], dtype=torch.float16, device=device, requires_grad=False) if BATCH_SIZE['grad_acc'] != 0 else torch.tensor(1.0, dtype=torch.float16, device=device, requires_grad=False)
# iterate over training batches
for batch_idx, (inputs, labels, ccm, meta) in enumerate(train_loader):
inputs = inputs.to(device, non_blocking=True)
meta = meta.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
ccm = ccm.to(device, non_blocking=True)
# forward with mixed precision
with autocast(device_type='cuda', dtype=torch.float16):
outputs, embeddings = model(inputs, meta)
loss = loss_fn(outputs, embeddings, labels) / loss_div
# loss backward
scaler.scale(loss).backward()
# Compute metrics
loss_metric.update((loss * loss_div).detach())
preds = outputs.softmax(dim=-1).detach()
metrics.update(preds, labels)
metric_ccm.update(preds * ccm, labels)
############################ grad acc ##############################
if (batch_idx+1) % BATCH_SIZE['grad_acc'] == 0:
#scaler.unscale_(optimizer)
#torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # optimize with gradient clipping to 1 with mixed precision
scaler.step(optimizer)
scaler.update()
# zero the parameter gradients
optimizer.zero_grad(set_to_none=True)
# update ema model
ema_model.update(model)
# compute, sync & reset metrics for validation
epoch_loss = loss_metric.compute()
epoch_metrics = metrics.compute()
epoch_metric_ccm = metric_ccm.compute()
loss_metric.reset()
metrics.reset()
metric_ccm.reset()
# Append metric results to logs
logs['loss'].append(epoch_loss.cpu().item())
logs['acc'].append(epoch_metrics['acc'].cpu().item())
logs['acc_top3'].append(epoch_metrics['top3_acc'].cpu().item())
logs['f1'].append(epoch_metrics['f1'].cpu().item())
logs['f1country'].append(epoch_metric_ccm.detach().cpu().item())
print(f"loss: {logs['loss'][epoch]:.5f}, acc: {logs['acc'][epoch]:.5f}, acc_top3: {logs['acc_top3'][epoch]:.5f}, f1: {logs['f1'][epoch]:.5f}, f1country: {logs['f1country'][epoch]:.5f}", end=' || ')
# zero the parameter gradients
optimizer.zero_grad(set_to_none=True)
del inputs, labels, ccm, meta, preds, outputs, loss, loss_div, epoch_loss, epoch_metrics, epoch_metric_ccm
torch.cuda.empty_cache()
############################## valid phase ####################################
with torch.no_grad():
model.eval()
# iterate over validation batches
for (inputs, labels, ccm, meta) in valid_loader:
inputs = inputs.to(device, non_blocking=True)
inputs = inputs.view(-1, 3, TRANSFORMS['IMAGE_SIZE_VAL'], TRANSFORMS['IMAGE_SIZE_VAL'])
meta = meta.to(device, non_blocking=True)
meta = torch.repeat_interleave(meta, repeats=5, dim=0)
labels = labels.to(device, non_blocking=True)
ccm = ccm.to(device, non_blocking=True)
# forward with mixed precision
with autocast(device_type='cuda', dtype=torch.float16):
outputs, embeddings = model(inputs, meta)
outputs = outputs.view(-1, 5, NUM_CLASSES).mean(1)
embeddings = embeddings.view(-1, 5, 1024+128).mean(1)
loss = loss_fn(outputs, embeddings, labels)
# Compute metrics
loss_metric.update(loss.detach())
preds = outputs.softmax(dim=-1).detach()
metrics.update(preds, labels)
metric_ccm.update(preds * ccm, labels)
# compute, sync & reset metrics for validation
epoch_loss = loss_metric.compute()
epoch_metrics = metrics.compute()
epoch_metric_ccm = metric_ccm.compute()
loss_metric.reset()
metrics.reset()
metric_ccm.reset()
# Append metric results to logs
logs['val_loss'].append(epoch_loss.cpu().item())
logs['val_acc'].append(epoch_metrics['acc'].cpu().item())
logs['val_acc_top3'].append(epoch_metrics['top3_acc'].cpu().item())
logs['val_f1'].append(epoch_metrics['f1'].cpu().item())
logs['val_f1country'].append(epoch_metric_ccm.detach().cpu().item())
print(f"val_loss: {logs['val_loss'][epoch]:.5f}, val_acc: {logs['val_acc'][epoch]:.5f}, val_acc_top3: {logs['val_acc_top3'][epoch]:.5f}, val_f1: {logs['val_f1'][epoch]:.5f}, val_f1country: {logs['val_f1country'][epoch]:.5f}", end=' || ')
del inputs, labels, ccm, meta, preds, outputs, loss, epoch_loss, epoch_metrics, epoch_metric_ccm
torch.cuda.empty_cache()
# save logs as csv
logs_df = pd.DataFrame(logs)
logs_df.to_csv(f'{MODEL_DIR}train_history.csv', index_label='epoch', sep=',', encoding='utf-8')
if WANDB:
# at the end of each epoch, log anything you want to log for that epoch
wandb.log(
{k:v[epoch] for k,v in logs.items()}, # e.g. log each metric value for the current epoch in our defined logs dict
step=epoch # epoch index for wandb
)
#save trained model for each epoch
torch.save(model.state_dict(), f'{MODEL_DIR}model_epoch{epoch}.pth')
torch.save(ema_model.module.state_dict(), f'{MODEL_DIR}ema_model_epoch{epoch}.pth')
torch.save(optimizer.state_dict(), f'{MODEL_DIR}optimizer_epoch{epoch}.pth')
torch.save(scaler.state_dict(), f'{MODEL_DIR}mp_scaler_epoch{epoch}.pth')
torch.save(loss_fn.arcloss.state_dict(), f'{MODEL_DIR}arcloss_epoch{epoch}.pth')
# end time of epoch
epoch_end = time.perf_counter()
print(f"epoch runtime: {epoch_end-epoch_start:5.3f} sec.")
del logs_df, epoch_start, epoch_end
torch.cuda.empty_cache()
################################## EMA Model Validation ################################
del model
torch.cuda.empty_cache()
ema_net = ema_model.module
ema_net.eval()
with torch.no_grad():
# iterate over validation batches
for (inputs, labels, ccm, meta) in valid_loader:
inputs = inputs.to(device, non_blocking=True)
inputs = inputs.view(-1, 3, TRANSFORMS['IMAGE_SIZE_VAL'], TRANSFORMS['IMAGE_SIZE_VAL'])
meta = meta.to(device, non_blocking=True)
meta = torch.repeat_interleave(meta, repeats=5, dim=0)
labels = labels.to(device, non_blocking=True)
ccm = ccm.to(device, non_blocking=True)
# forward with mixed precision
with autocast(device_type='cuda', dtype=torch.float16):
outputs, embeddings = ema_net(inputs, meta)
outputs = outputs.view(-1, 5, NUM_CLASSES).mean(1)
embeddings = embeddings.view(-1, 5, 1024+128).mean(1)
loss = loss_fn(outputs, embeddings, labels)
# Compute metrics
loss_metric.update(loss.detach())
preds = outputs.softmax(dim=-1).detach()
metrics.update(preds, labels)
metric_ccm.update(preds * ccm, labels)
# compute, sync & reset metrics for validation
epoch_loss = loss_metric.compute()
epoch_metrics = metrics.compute()
epoch_metric_ccm = metric_ccm.compute()
loss_metric.reset()
metrics.reset()
metric_ccm.reset()
print(f"ema_loss: {epoch_loss.cpu().item():.5f}, ema_acc: {epoch_metrics['acc'].cpu().item():.5f}, ema_acc_top3: {epoch_metrics['top3_acc'].cpu().item():.5f}, ema_f1: {epoch_metrics['f1'].cpu().item():.5f}, ema_f1country: {epoch_metric_ccm.detach().cpu().item():.5f}")
with open(f'{MODEL_DIR}ema_results.txt', 'w') as f:
print(f"ema_loss: {epoch_loss.cpu().item():.5f}, ema_acc: {epoch_metrics['acc'].cpu().item():.5f}, ema_acc_top3: {epoch_metrics['top3_acc'].cpu().item():.5f}, ema_f1: {epoch_metrics['f1'].cpu().item():.5f}, ema_f1country: {epoch_metric_ccm.detach().cpu().item():.5f}", file=f)
plot_history(logs)
# end time of trainig
end_training = time.perf_counter()
print(f'Training succeeded in {(end_training - start_training):5.3f}s')
if WANDB:
wandb.finish()
if __name__=="__main__":
main()
|