update
Browse files- attention_temporal_videoae.py +1314 -0
- base_encoder.py +68 -0
- builder.py +17 -0
- llava_arch.py +76 -52
- llava_qwen.py +44 -24
- mm_utils.py +18 -14
- modeling_qwen2.py +4 -1
- sae.py +45 -0
- sae_utils.py +302 -0
- siglip_encoder.py +154 -0
- utils.py +166 -0
- utils_encoder.py +296 -0
attention_temporal_videoae.py
ADDED
|
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch as th
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch import nn, einsum
|
| 7 |
+
from einops import rearrange, repeat
|
| 8 |
+
from typing import Optional, Any
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
import xformers
|
| 12 |
+
import xformers.ops
|
| 13 |
+
|
| 14 |
+
XFORMERS_IS_AVAILBLE = True
|
| 15 |
+
except:
|
| 16 |
+
XFORMERS_IS_AVAILBLE = False
|
| 17 |
+
|
| 18 |
+
from .utils_encoder import (
|
| 19 |
+
conv_nd,
|
| 20 |
+
zero_module,
|
| 21 |
+
normalization,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def exists(val):
|
| 26 |
+
return val is not None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def uniq(arr):
|
| 30 |
+
return {el: True for el in arr}.keys()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def default(val, d):
|
| 34 |
+
if exists(val):
|
| 35 |
+
return val
|
| 36 |
+
return d() if isfunction(d) else d
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def max_neg_value(t):
|
| 40 |
+
return -torch.finfo(t.dtype).max
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def init_(tensor):
|
| 44 |
+
dim = tensor.shape[-1]
|
| 45 |
+
std = 1 / math.sqrt(dim)
|
| 46 |
+
tensor.uniform_(-std, std)
|
| 47 |
+
return tensor
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# feedforward
|
| 51 |
+
class GEGLU(nn.Module):
|
| 52 |
+
def __init__(self, dim_in, dim_out):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 58 |
+
return x * F.gelu(gate)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class FeedForward(nn.Module):
|
| 62 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
| 63 |
+
super().__init__()
|
| 64 |
+
inner_dim = int(dim * mult)
|
| 65 |
+
dim_out = default(dim_out, dim)
|
| 66 |
+
project_in = (
|
| 67 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
| 68 |
+
if not glu
|
| 69 |
+
else GEGLU(dim, inner_dim)
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
self.net = nn.Sequential(
|
| 73 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def forward(self, x):
|
| 77 |
+
return self.net(x)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def zero_module(module):
|
| 81 |
+
"""
|
| 82 |
+
Zero out the parameters of a module and return it.
|
| 83 |
+
"""
|
| 84 |
+
for p in module.parameters():
|
| 85 |
+
p.detach().zero_()
|
| 86 |
+
return module
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def Normalize(in_channels, num_groups=32):
|
| 90 |
+
return torch.nn.GroupNorm(
|
| 91 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# ---------------------------------------------------------------------------------------------------
|
| 96 |
+
class RelativePosition(nn.Module):
|
| 97 |
+
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
|
| 98 |
+
|
| 99 |
+
def __init__(self, num_units, max_relative_position):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.num_units = num_units
|
| 102 |
+
self.max_relative_position = max_relative_position
|
| 103 |
+
self.embeddings_table = nn.Parameter(
|
| 104 |
+
th.Tensor(max_relative_position * 2 + 1, num_units)
|
| 105 |
+
)
|
| 106 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
| 107 |
+
|
| 108 |
+
def forward(self, length_q, length_k):
|
| 109 |
+
device = self.embeddings_table.device
|
| 110 |
+
range_vec_q = th.arange(length_q, device=device)
|
| 111 |
+
range_vec_k = th.arange(length_k, device=device)
|
| 112 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
| 113 |
+
distance_mat_clipped = th.clamp(
|
| 114 |
+
distance_mat, -self.max_relative_position, self.max_relative_position
|
| 115 |
+
)
|
| 116 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
| 117 |
+
# final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device)
|
| 118 |
+
# final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
|
| 119 |
+
final_mat = final_mat.long()
|
| 120 |
+
embeddings = self.embeddings_table[final_mat]
|
| 121 |
+
return embeddings
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class TemporalCrossAttention(nn.Module):
|
| 125 |
+
def __init__(
|
| 126 |
+
self,
|
| 127 |
+
query_dim,
|
| 128 |
+
context_dim=None,
|
| 129 |
+
heads=8,
|
| 130 |
+
dim_head=64,
|
| 131 |
+
dropout=0.0,
|
| 132 |
+
temporal_length=None, # For relative positional representation and image-video joint training.
|
| 133 |
+
image_length=None, # For image-video joint training.
|
| 134 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
| 135 |
+
img_video_joint_train=False, # For image-video joint training.
|
| 136 |
+
use_tempoal_causal_attn=False,
|
| 137 |
+
bidirectional_causal_attn=False,
|
| 138 |
+
tempoal_attn_type=None,
|
| 139 |
+
joint_train_mode="same_batch",
|
| 140 |
+
**kwargs,
|
| 141 |
+
):
|
| 142 |
+
super().__init__()
|
| 143 |
+
inner_dim = dim_head * heads
|
| 144 |
+
context_dim = default(context_dim, query_dim)
|
| 145 |
+
self.context_dim = context_dim
|
| 146 |
+
|
| 147 |
+
self.scale = dim_head**-0.5
|
| 148 |
+
self.heads = heads
|
| 149 |
+
self.temporal_length = temporal_length
|
| 150 |
+
self.use_relative_position = use_relative_position
|
| 151 |
+
self.img_video_joint_train = img_video_joint_train
|
| 152 |
+
self.bidirectional_causal_attn = bidirectional_causal_attn
|
| 153 |
+
self.joint_train_mode = joint_train_mode
|
| 154 |
+
assert joint_train_mode in ["same_batch", "diff_batch"]
|
| 155 |
+
self.tempoal_attn_type = tempoal_attn_type
|
| 156 |
+
|
| 157 |
+
if bidirectional_causal_attn:
|
| 158 |
+
assert use_tempoal_causal_attn
|
| 159 |
+
if tempoal_attn_type:
|
| 160 |
+
assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"]
|
| 161 |
+
assert not use_tempoal_causal_attn
|
| 162 |
+
assert not (
|
| 163 |
+
img_video_joint_train and (self.joint_train_mode == "same_batch")
|
| 164 |
+
)
|
| 165 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 166 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 167 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 168 |
+
|
| 169 |
+
assert not (
|
| 170 |
+
img_video_joint_train
|
| 171 |
+
and (self.joint_train_mode == "same_batch")
|
| 172 |
+
and use_tempoal_causal_attn
|
| 173 |
+
)
|
| 174 |
+
if img_video_joint_train:
|
| 175 |
+
if self.joint_train_mode == "same_batch":
|
| 176 |
+
mask = torch.ones(
|
| 177 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
| 178 |
+
)
|
| 179 |
+
# mask[:, image_length:, :] = 0
|
| 180 |
+
# mask[:, :, image_length:] = 0
|
| 181 |
+
mask[:, temporal_length:, :] = 0
|
| 182 |
+
mask[:, :, temporal_length:] = 0
|
| 183 |
+
self.mask = mask
|
| 184 |
+
else:
|
| 185 |
+
self.mask = None
|
| 186 |
+
elif use_tempoal_causal_attn:
|
| 187 |
+
# normal causal attn
|
| 188 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
| 189 |
+
elif tempoal_attn_type == "sparse_causal":
|
| 190 |
+
# all frames interact with only the `prev` & self frame
|
| 191 |
+
mask1 = torch.tril(
|
| 192 |
+
torch.ones([1, temporal_length, temporal_length])
|
| 193 |
+
).bool() # true indicates keeping
|
| 194 |
+
mask2 = torch.zeros(
|
| 195 |
+
[1, temporal_length, temporal_length]
|
| 196 |
+
) # initialize to same shape with mask1
|
| 197 |
+
mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril(
|
| 198 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
| 199 |
+
)
|
| 200 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
| 201 |
+
self.mask = mask1 & mask2
|
| 202 |
+
elif tempoal_attn_type == "sparse_causal_first":
|
| 203 |
+
# all frames interact with only the `first` & self frame
|
| 204 |
+
mask1 = torch.tril(
|
| 205 |
+
torch.ones([1, temporal_length, temporal_length])
|
| 206 |
+
).bool() # true indicates keeping
|
| 207 |
+
mask2 = torch.zeros([1, temporal_length, temporal_length])
|
| 208 |
+
mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril(
|
| 209 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
| 210 |
+
)
|
| 211 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
| 212 |
+
self.mask = mask1 & mask2
|
| 213 |
+
else:
|
| 214 |
+
self.mask = None
|
| 215 |
+
|
| 216 |
+
if use_relative_position:
|
| 217 |
+
assert temporal_length is not None
|
| 218 |
+
self.relative_position_k = RelativePosition(
|
| 219 |
+
num_units=dim_head, max_relative_position=temporal_length
|
| 220 |
+
)
|
| 221 |
+
self.relative_position_v = RelativePosition(
|
| 222 |
+
num_units=dim_head, max_relative_position=temporal_length
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
self.to_out = nn.Sequential(
|
| 226 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
nn.init.constant_(self.to_q.weight, 0)
|
| 230 |
+
nn.init.constant_(self.to_k.weight, 0)
|
| 231 |
+
nn.init.constant_(self.to_v.weight, 0)
|
| 232 |
+
nn.init.constant_(self.to_out[0].weight, 0)
|
| 233 |
+
nn.init.constant_(self.to_out[0].bias, 0)
|
| 234 |
+
|
| 235 |
+
def forward(self, x, context=None, mask=None):
|
| 236 |
+
# if context is None:
|
| 237 |
+
# print(f'[Temp Attn] x={x.shape},context=None')
|
| 238 |
+
# else:
|
| 239 |
+
# print(f'[Temp Attn] x={x.shape},context={context.shape}')
|
| 240 |
+
|
| 241 |
+
nh = self.heads
|
| 242 |
+
out = x
|
| 243 |
+
q = self.to_q(out)
|
| 244 |
+
# if context is not None:
|
| 245 |
+
# print(f'temporal context 1 ={context.shape}')
|
| 246 |
+
# print(f'x={x.shape}')
|
| 247 |
+
context = default(context, x)
|
| 248 |
+
# print(f'temporal context 2 ={context.shape}')
|
| 249 |
+
k = self.to_k(context)
|
| 250 |
+
v = self.to_v(context)
|
| 251 |
+
# print(f'q ={q.shape},k={k.shape}')
|
| 252 |
+
|
| 253 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v))
|
| 254 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
| 255 |
+
|
| 256 |
+
if self.use_relative_position:
|
| 257 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
| 258 |
+
k2 = self.relative_position_k(len_q, len_k)
|
| 259 |
+
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
|
| 260 |
+
sim += sim2
|
| 261 |
+
# print('mask',mask)
|
| 262 |
+
if exists(self.mask):
|
| 263 |
+
if mask is None:
|
| 264 |
+
mask = self.mask.to(sim.device)
|
| 265 |
+
else:
|
| 266 |
+
mask = self.mask.to(sim.device).bool() & mask # .to(sim.device)
|
| 267 |
+
else:
|
| 268 |
+
mask = mask
|
| 269 |
+
# if self.img_video_joint_train:
|
| 270 |
+
# # process mask (make mask same shape with sim)
|
| 271 |
+
# c, h, w = mask.shape
|
| 272 |
+
# c, t, s = sim.shape
|
| 273 |
+
# # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"
|
| 274 |
+
|
| 275 |
+
# if h > t:
|
| 276 |
+
# mask = mask[:, :t, :]
|
| 277 |
+
# elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
|
| 278 |
+
# mask_ = torch.zeros([c,t,w]).to(mask.device)
|
| 279 |
+
# mask_[:, :h, :] = mask
|
| 280 |
+
# mask = mask_
|
| 281 |
+
# c, h, w = mask.shape
|
| 282 |
+
# if w > s:
|
| 283 |
+
# mask = mask[:, :, :s]
|
| 284 |
+
# elif w < s: # pad zeros to mask
|
| 285 |
+
# mask_ = torch.zeros([c,h,s]).to(mask.device)
|
| 286 |
+
# mask_[:, :, :w] = mask
|
| 287 |
+
# mask = mask_
|
| 288 |
+
|
| 289 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
| 290 |
+
# sim = sim.float().masked_fill(mask == 0, max_neg_value)
|
| 291 |
+
if mask is not None:
|
| 292 |
+
max_neg_value = -1e9
|
| 293 |
+
sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking
|
| 294 |
+
# print('sim after masking: ', sim)
|
| 295 |
+
|
| 296 |
+
# if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
|
| 297 |
+
# print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')
|
| 298 |
+
|
| 299 |
+
attn = sim.softmax(dim=-1)
|
| 300 |
+
# print('attn after softmax: ', attn)
|
| 301 |
+
# if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
|
| 302 |
+
# print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')
|
| 303 |
+
|
| 304 |
+
# attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
|
| 305 |
+
# if torch.isinf(attn.detach()).any():
|
| 306 |
+
# import pdb;pdb.set_trace()
|
| 307 |
+
# if torch.isnan(attn.detach()).any():
|
| 308 |
+
# import pdb;pdb.set_trace()
|
| 309 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
| 310 |
+
|
| 311 |
+
if self.bidirectional_causal_attn:
|
| 312 |
+
mask_reverse = torch.triu(
|
| 313 |
+
torch.ones(
|
| 314 |
+
[1, self.temporal_length, self.temporal_length], device=sim.device
|
| 315 |
+
)
|
| 316 |
+
)
|
| 317 |
+
sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
|
| 318 |
+
attn_reverse = sim_reverse.softmax(dim=-1)
|
| 319 |
+
out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v)
|
| 320 |
+
out += out_reverse
|
| 321 |
+
|
| 322 |
+
if self.use_relative_position:
|
| 323 |
+
v2 = self.relative_position_v(len_q, len_v)
|
| 324 |
+
out2 = einsum("b t s, t s d -> b t d", attn, v2) # TODO check
|
| 325 |
+
out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
|
| 326 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) # merge head
|
| 327 |
+
return self.to_out(out)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
# ---------------------------------------------------------------------------------------------------
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class SpatialSelfAttention(nn.Module):
|
| 334 |
+
def __init__(self, in_channels):
|
| 335 |
+
super().__init__()
|
| 336 |
+
self.in_channels = in_channels
|
| 337 |
+
|
| 338 |
+
self.norm = Normalize(in_channels)
|
| 339 |
+
self.q = torch.nn.Conv2d(
|
| 340 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 341 |
+
)
|
| 342 |
+
self.k = torch.nn.Conv2d(
|
| 343 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 344 |
+
)
|
| 345 |
+
self.v = torch.nn.Conv2d(
|
| 346 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 347 |
+
)
|
| 348 |
+
self.proj_out = torch.nn.Conv2d(
|
| 349 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
def forward(self, x):
|
| 353 |
+
h_ = x
|
| 354 |
+
h_ = self.norm(h_)
|
| 355 |
+
q = self.q(h_)
|
| 356 |
+
k = self.k(h_)
|
| 357 |
+
v = self.v(h_)
|
| 358 |
+
|
| 359 |
+
# compute attention
|
| 360 |
+
b, c, h, w = q.shape
|
| 361 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
| 362 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
| 363 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
| 364 |
+
|
| 365 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 366 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 367 |
+
|
| 368 |
+
# attend to values
|
| 369 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
| 370 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
| 371 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
| 372 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
| 373 |
+
h_ = self.proj_out(h_)
|
| 374 |
+
|
| 375 |
+
return x + h_
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
class CrossAttention(nn.Module):
|
| 379 |
+
def __init__(
|
| 380 |
+
self,
|
| 381 |
+
query_dim,
|
| 382 |
+
context_dim=None,
|
| 383 |
+
heads=8,
|
| 384 |
+
dim_head=64,
|
| 385 |
+
dropout=0.0,
|
| 386 |
+
sa_shared_kv=False,
|
| 387 |
+
shared_type="only_first",
|
| 388 |
+
**kwargs,
|
| 389 |
+
):
|
| 390 |
+
super().__init__()
|
| 391 |
+
inner_dim = dim_head * heads
|
| 392 |
+
context_dim = default(context_dim, query_dim)
|
| 393 |
+
self.sa_shared_kv = sa_shared_kv
|
| 394 |
+
assert shared_type in [
|
| 395 |
+
"only_first",
|
| 396 |
+
"all_frames",
|
| 397 |
+
"first_and_prev",
|
| 398 |
+
"only_prev",
|
| 399 |
+
"full",
|
| 400 |
+
"causal",
|
| 401 |
+
"full_qkv",
|
| 402 |
+
]
|
| 403 |
+
self.shared_type = shared_type
|
| 404 |
+
|
| 405 |
+
self.scale = dim_head**-0.5
|
| 406 |
+
self.heads = heads
|
| 407 |
+
self.dim_head = dim_head
|
| 408 |
+
|
| 409 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 410 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 411 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 412 |
+
|
| 413 |
+
self.to_out = nn.Sequential(
|
| 414 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 415 |
+
)
|
| 416 |
+
self.attention_op: Optional[Any] = None
|
| 417 |
+
|
| 418 |
+
def forward(self, x, context=None, mask=None):
|
| 419 |
+
h = self.heads
|
| 420 |
+
b = x.shape[0]
|
| 421 |
+
|
| 422 |
+
q = self.to_q(x)
|
| 423 |
+
context = default(context, x)
|
| 424 |
+
k = self.to_k(context)
|
| 425 |
+
v = self.to_v(context)
|
| 426 |
+
if self.sa_shared_kv:
|
| 427 |
+
if self.shared_type == "only_first":
|
| 428 |
+
k, v = map(
|
| 429 |
+
lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c")
|
| 430 |
+
.unsqueeze(0)
|
| 431 |
+
.repeat(b, 1, 1),
|
| 432 |
+
(k, v),
|
| 433 |
+
)
|
| 434 |
+
else:
|
| 435 |
+
raise NotImplementedError
|
| 436 |
+
|
| 437 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
| 438 |
+
|
| 439 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
| 440 |
+
|
| 441 |
+
if exists(mask):
|
| 442 |
+
mask = rearrange(mask, "b ... -> b (...)")
|
| 443 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 444 |
+
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
| 445 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 446 |
+
|
| 447 |
+
# attention, what we cannot get enough of
|
| 448 |
+
attn = sim.softmax(dim=-1)
|
| 449 |
+
|
| 450 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
| 451 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
| 452 |
+
return self.to_out(out)
|
| 453 |
+
|
| 454 |
+
def efficient_forward(self, x, context=None, mask=None):
|
| 455 |
+
q = self.to_q(x)
|
| 456 |
+
context = default(context, x)
|
| 457 |
+
k = self.to_k(context)
|
| 458 |
+
v = self.to_v(context)
|
| 459 |
+
|
| 460 |
+
b, _, _ = q.shape
|
| 461 |
+
q, k, v = map(
|
| 462 |
+
lambda t: t.unsqueeze(3)
|
| 463 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 464 |
+
.permute(0, 2, 1, 3)
|
| 465 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 466 |
+
.contiguous(),
|
| 467 |
+
(q, k, v),
|
| 468 |
+
)
|
| 469 |
+
# actually compute the attention, what we cannot get enough of
|
| 470 |
+
out = xformers.ops.memory_efficient_attention(
|
| 471 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
if exists(mask):
|
| 475 |
+
raise NotImplementedError
|
| 476 |
+
out = (
|
| 477 |
+
out.unsqueeze(0)
|
| 478 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 479 |
+
.permute(0, 2, 1, 3)
|
| 480 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 481 |
+
)
|
| 482 |
+
return self.to_out(out)
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
class VideoSpatialCrossAttention(CrossAttention):
|
| 486 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
|
| 487 |
+
super().__init__(query_dim, context_dim, heads, dim_head, dropout)
|
| 488 |
+
|
| 489 |
+
def forward(self, x, context=None, mask=None):
|
| 490 |
+
b, c, t, h, w = x.shape
|
| 491 |
+
if context is not None:
|
| 492 |
+
context = context.repeat(t, 1, 1)
|
| 493 |
+
x = super.forward(spatial_attn_reshape(x), context=context) + x
|
| 494 |
+
return spatial_attn_reshape_back(x, b, h)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
# class BasicTransformerBlockST(nn.Module):
|
| 498 |
+
# def __init__(
|
| 499 |
+
# self,
|
| 500 |
+
# # Spatial Stuff
|
| 501 |
+
# dim,
|
| 502 |
+
# n_heads,
|
| 503 |
+
# d_head,
|
| 504 |
+
# dropout=0.0,
|
| 505 |
+
# context_dim=None,
|
| 506 |
+
# gated_ff=True,
|
| 507 |
+
# checkpoint=True,
|
| 508 |
+
# # Temporal Stuff
|
| 509 |
+
# temporal_length=None,
|
| 510 |
+
# image_length=None,
|
| 511 |
+
# use_relative_position=True,
|
| 512 |
+
# img_video_joint_train=False,
|
| 513 |
+
# cross_attn_on_tempoal=False,
|
| 514 |
+
# temporal_crossattn_type="selfattn",
|
| 515 |
+
# order="stst",
|
| 516 |
+
# temporalcrossfirst=False,
|
| 517 |
+
# temporal_context_dim=None,
|
| 518 |
+
# split_stcontext=False,
|
| 519 |
+
# local_spatial_temporal_attn=False,
|
| 520 |
+
# window_size=2,
|
| 521 |
+
# random_t=False,
|
| 522 |
+
# **kwargs,
|
| 523 |
+
# ):
|
| 524 |
+
# super().__init__()
|
| 525 |
+
# # Self attention
|
| 526 |
+
# self.attn1 = CrossAttention(
|
| 527 |
+
# query_dim=dim,
|
| 528 |
+
# heads=n_heads,
|
| 529 |
+
# dim_head=d_head,
|
| 530 |
+
# dropout=dropout,
|
| 531 |
+
# **kwargs,
|
| 532 |
+
# )
|
| 533 |
+
# self.attn2 = CrossAttention(
|
| 534 |
+
# query_dim=dim,
|
| 535 |
+
# context_dim=context_dim,
|
| 536 |
+
# heads=n_heads,
|
| 537 |
+
# dim_head=d_head,
|
| 538 |
+
# dropout=dropout,
|
| 539 |
+
# **kwargs,
|
| 540 |
+
# )
|
| 541 |
+
# if XFORMERS_IS_AVAILBLE:
|
| 542 |
+
# self.attn1.forward = self.attn1.efficient_forward
|
| 543 |
+
# self.attn2.forward = self.attn2.efficient_forward
|
| 544 |
+
|
| 545 |
+
# self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 546 |
+
# # cross attention if context is not None
|
| 547 |
+
|
| 548 |
+
# self.norm1 = nn.LayerNorm(dim)
|
| 549 |
+
# self.norm2 = nn.LayerNorm(dim)
|
| 550 |
+
# self.norm3 = nn.LayerNorm(dim)
|
| 551 |
+
# self.checkpoint = checkpoint
|
| 552 |
+
# self.order = order
|
| 553 |
+
# assert self.order in ["stst", "sstt", "st_parallel"]
|
| 554 |
+
# self.temporalcrossfirst = temporalcrossfirst
|
| 555 |
+
# self.split_stcontext = split_stcontext
|
| 556 |
+
# self.local_spatial_temporal_attn = local_spatial_temporal_attn
|
| 557 |
+
# if self.local_spatial_temporal_attn:
|
| 558 |
+
# assert self.order == "stst"
|
| 559 |
+
# assert self.order == "stst"
|
| 560 |
+
# self.window_size = window_size
|
| 561 |
+
# if not split_stcontext:
|
| 562 |
+
# temporal_context_dim = context_dim
|
| 563 |
+
# # Temporal attention
|
| 564 |
+
# assert temporal_crossattn_type in ["selfattn", "crossattn", "skip"]
|
| 565 |
+
# self.temporal_crossattn_type = temporal_crossattn_type
|
| 566 |
+
# self.attn1_tmp = TemporalCrossAttention(
|
| 567 |
+
# query_dim=dim,
|
| 568 |
+
# heads=n_heads,
|
| 569 |
+
# dim_head=d_head,
|
| 570 |
+
# dropout=dropout,
|
| 571 |
+
# temporal_length=temporal_length,
|
| 572 |
+
# image_length=image_length,
|
| 573 |
+
# use_relative_position=use_relative_position,
|
| 574 |
+
# img_video_joint_train=img_video_joint_train,
|
| 575 |
+
# **kwargs,
|
| 576 |
+
# )
|
| 577 |
+
# self.attn2_tmp = TemporalCrossAttention(
|
| 578 |
+
# query_dim=dim,
|
| 579 |
+
# heads=n_heads,
|
| 580 |
+
# dim_head=d_head,
|
| 581 |
+
# dropout=dropout,
|
| 582 |
+
# # cross attn
|
| 583 |
+
# context_dim=(
|
| 584 |
+
# temporal_context_dim if temporal_crossattn_type == "crossattn" else None
|
| 585 |
+
# ),
|
| 586 |
+
# # temporal attn
|
| 587 |
+
# temporal_length=temporal_length,
|
| 588 |
+
# image_length=image_length,
|
| 589 |
+
# use_relative_position=use_relative_position,
|
| 590 |
+
# img_video_joint_train=img_video_joint_train,
|
| 591 |
+
# **kwargs,
|
| 592 |
+
# )
|
| 593 |
+
# self.norm4 = nn.LayerNorm(dim)
|
| 594 |
+
# self.norm5 = nn.LayerNorm(dim)
|
| 595 |
+
# self.random_t = random_t
|
| 596 |
+
# # self.norm1_tmp = nn.LayerNorm(dim)
|
| 597 |
+
# # self.norm2_tmp = nn.LayerNorm(dim)
|
| 598 |
+
|
| 599 |
+
# ##############################################################################################################################################
|
| 600 |
+
# def forward(
|
| 601 |
+
# self,
|
| 602 |
+
# x,
|
| 603 |
+
# context=None,
|
| 604 |
+
# temporal_context=None,
|
| 605 |
+
# no_temporal_attn=None,
|
| 606 |
+
# attn_mask=None,
|
| 607 |
+
# **kwargs,
|
| 608 |
+
# ):
|
| 609 |
+
# # print(f'no_temporal_attn={no_temporal_attn}')
|
| 610 |
+
|
| 611 |
+
# if not self.split_stcontext:
|
| 612 |
+
# # st cross attention use the same context vector
|
| 613 |
+
# temporal_context = context.detach().clone()
|
| 614 |
+
|
| 615 |
+
# if context is None and temporal_context is None:
|
| 616 |
+
# # self-attention models
|
| 617 |
+
# if no_temporal_attn:
|
| 618 |
+
# raise NotImplementedError
|
| 619 |
+
# return checkpoint(
|
| 620 |
+
# self._forward_nocontext, (x), self.parameters(), self.checkpoint
|
| 621 |
+
# )
|
| 622 |
+
# else:
|
| 623 |
+
# # cross-attention models
|
| 624 |
+
# if no_temporal_attn:
|
| 625 |
+
# forward_func = self._forward_no_temporal_attn
|
| 626 |
+
# else:
|
| 627 |
+
# forward_func = self._forward
|
| 628 |
+
# inputs = (
|
| 629 |
+
# (x, context, temporal_context)
|
| 630 |
+
# if temporal_context is not None
|
| 631 |
+
# else (x, context)
|
| 632 |
+
# )
|
| 633 |
+
# return checkpoint(forward_func, inputs, self.parameters(), self.checkpoint)
|
| 634 |
+
# # if attn_mask is not None:
|
| 635 |
+
# # return checkpoint(self._forward, (x, context, temporal_context, attn_mask), self.parameters(), self.checkpoint)
|
| 636 |
+
# # return checkpoint(self._forward, (x, context, temporal_context), self.parameters(), self.checkpoint)
|
| 637 |
+
|
| 638 |
+
# def _forward(
|
| 639 |
+
# self,
|
| 640 |
+
# x,
|
| 641 |
+
# context=None,
|
| 642 |
+
# temporal_context=None,
|
| 643 |
+
# mask=None,
|
| 644 |
+
# no_temporal_attn=None,
|
| 645 |
+
# ):
|
| 646 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
| 647 |
+
# b, c, t, h, w = x.shape
|
| 648 |
+
|
| 649 |
+
# if self.order in ["stst", "sstt"]:
|
| 650 |
+
# x = self._st_cross_attn(
|
| 651 |
+
# x,
|
| 652 |
+
# context,
|
| 653 |
+
# temporal_context=temporal_context,
|
| 654 |
+
# order=self.order,
|
| 655 |
+
# mask=mask,
|
| 656 |
+
# ) # no_temporal_attn=no_temporal_attn,
|
| 657 |
+
# elif self.order == "st_parallel":
|
| 658 |
+
# x = self._st_cross_attn_parallel(
|
| 659 |
+
# x,
|
| 660 |
+
# context,
|
| 661 |
+
# temporal_context=temporal_context,
|
| 662 |
+
# order=self.order,
|
| 663 |
+
# ) # no_temporal_attn=no_temporal_attn,
|
| 664 |
+
# else:
|
| 665 |
+
# raise NotImplementedError
|
| 666 |
+
|
| 667 |
+
# x = self.ff(self.norm3(x)) + x
|
| 668 |
+
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
| 669 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
| 670 |
+
# elif no_temporal_attn:
|
| 671 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
| 672 |
+
# return x
|
| 673 |
+
|
| 674 |
+
# def _forward_no_temporal_attn(
|
| 675 |
+
# self,
|
| 676 |
+
# x,
|
| 677 |
+
# context=None,
|
| 678 |
+
# temporal_context=None,
|
| 679 |
+
# ):
|
| 680 |
+
# # temporary implementation :(
|
| 681 |
+
# # because checkpoint does not support non-tensor inputs currently.
|
| 682 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
| 683 |
+
# b, c, t, h, w = x.shape
|
| 684 |
+
|
| 685 |
+
# if self.order in ["stst", "sstt"]:
|
| 686 |
+
# # x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,)
|
| 687 |
+
# # mask = torch.zeros([1, t, t], device=x.device).bool() if context is None else torch.zeros([1, context.shape[1], t], device=x.device).bool()
|
| 688 |
+
# mask = torch.zeros([1, t, t], device=x.device).bool()
|
| 689 |
+
# x = self._st_cross_attn(
|
| 690 |
+
# x,
|
| 691 |
+
# context,
|
| 692 |
+
# temporal_context=temporal_context,
|
| 693 |
+
# order=self.order,
|
| 694 |
+
# mask=mask,
|
| 695 |
+
# )
|
| 696 |
+
# elif self.order == "st_parallel":
|
| 697 |
+
# x = self._st_cross_attn_parallel(
|
| 698 |
+
# x,
|
| 699 |
+
# context,
|
| 700 |
+
# temporal_context=temporal_context,
|
| 701 |
+
# order=self.order,
|
| 702 |
+
# no_temporal_attn=True,
|
| 703 |
+
# )
|
| 704 |
+
# else:
|
| 705 |
+
# raise NotImplementedError
|
| 706 |
+
|
| 707 |
+
# x = self.ff(self.norm3(x)) + x
|
| 708 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
| 709 |
+
# # x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
| 710 |
+
# return x
|
| 711 |
+
|
| 712 |
+
# def _forward_nocontext(self, x, no_temporal_attn=None):
|
| 713 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
| 714 |
+
# b, c, t, h, w = x.shape
|
| 715 |
+
|
| 716 |
+
# if self.order in ["stst", "sstt"]:
|
| 717 |
+
# x = self._st_cross_attn(
|
| 718 |
+
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
| 719 |
+
# )
|
| 720 |
+
# elif self.order == "st_parallel":
|
| 721 |
+
# x = self._st_cross_attn_parallel(
|
| 722 |
+
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
| 723 |
+
# )
|
| 724 |
+
# else:
|
| 725 |
+
# raise NotImplementedError
|
| 726 |
+
|
| 727 |
+
# x = self.ff(self.norm3(x)) + x
|
| 728 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
| 729 |
+
|
| 730 |
+
# return x
|
| 731 |
+
|
| 732 |
+
# ##############################################################################################################################################
|
| 733 |
+
|
| 734 |
+
# def _st_cross_attn(
|
| 735 |
+
# self, x, context=None, temporal_context=None, order="stst", mask=None
|
| 736 |
+
# ): # no_temporal_attn=None,
|
| 737 |
+
# b, c, t, h, w = x.shape
|
| 738 |
+
# # if context is not None:
|
| 739 |
+
# # print(f'[_st_cross_attn input] x={x.shape}, context={context.shape}')
|
| 740 |
+
# # else:
|
| 741 |
+
# # print(f'[_st_cross_attn input] x={x.shape}')
|
| 742 |
+
|
| 743 |
+
# if order == "stst":
|
| 744 |
+
# # spatial self attention
|
| 745 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
| 746 |
+
# # print(f'before attn1,x={x.shape}')
|
| 747 |
+
|
| 748 |
+
# x = self.attn1(self.norm1(x)) + x
|
| 749 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
| 750 |
+
|
| 751 |
+
# # temporal self attention
|
| 752 |
+
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
| 753 |
+
# if self.local_spatial_temporal_attn:
|
| 754 |
+
# x = local_spatial_temporal_attn_reshape(x, window_size=self.window_size)
|
| 755 |
+
# else:
|
| 756 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
| 757 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
| 758 |
+
|
| 759 |
+
# if self.local_spatial_temporal_attn:
|
| 760 |
+
# x = local_spatial_temporal_attn_reshape_back(
|
| 761 |
+
# x, window_size=self.window_size, b=b, h=h, w=w, t=t
|
| 762 |
+
# )
|
| 763 |
+
# else:
|
| 764 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
| 765 |
+
|
| 766 |
+
# # spatial cross attention
|
| 767 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
| 768 |
+
# # print(f'before attn2, x={x.shape}')
|
| 769 |
+
# # if context is not None:
|
| 770 |
+
# # print(f'[before attn2] context={context.shape}')
|
| 771 |
+
# if context is not None:
|
| 772 |
+
# if self.random_t:
|
| 773 |
+
# context_ = []
|
| 774 |
+
# for i in range(context.shape[0]):
|
| 775 |
+
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
| 776 |
+
# context_ = torch.cat(context_, dim=0)
|
| 777 |
+
# else:
|
| 778 |
+
# if context.shape[0] == t: # img captions no_temporal_attn or
|
| 779 |
+
# context_ = context
|
| 780 |
+
# else:
|
| 781 |
+
# # repeat conditions with t times
|
| 782 |
+
# context_ = []
|
| 783 |
+
# for i in range(context.shape[0]):
|
| 784 |
+
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
| 785 |
+
# context_ = torch.cat(context_, dim=0)
|
| 786 |
+
# else:
|
| 787 |
+
# context_ = None
|
| 788 |
+
|
| 789 |
+
# # if context_ is not None:
|
| 790 |
+
# # print(f'[before attn2] x={x.shape}, context_={context_.shape}')
|
| 791 |
+
# # else:
|
| 792 |
+
# # print(f'[before attn2] x={x.shape}')
|
| 793 |
+
|
| 794 |
+
# x = self.attn2(self.norm2(x), context=context_) + x
|
| 795 |
+
|
| 796 |
+
# # temporal cross attention
|
| 797 |
+
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
| 798 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
| 799 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
| 800 |
+
# if self.temporal_crossattn_type == "crossattn":
|
| 801 |
+
# # tmporal cross attention
|
| 802 |
+
# if temporal_context is not None:
|
| 803 |
+
# # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}')
|
| 804 |
+
# temporal_context = torch.cat(
|
| 805 |
+
# [context, temporal_context], dim=1
|
| 806 |
+
# ) # blc
|
| 807 |
+
# # print(f'STATTN after concat temporal_context={temporal_context.shape}')
|
| 808 |
+
# temporal_context = temporal_context.repeat(h * w, 1, 1)
|
| 809 |
+
# # print(f'after repeat temporal_context={temporal_context.shape}')
|
| 810 |
+
# else:
|
| 811 |
+
# temporal_context = context[0:1, ...].repeat(h * w, 1, 1)
|
| 812 |
+
# # print(f'STATTN after concat x={x.shape}')
|
| 813 |
+
# x = (
|
| 814 |
+
# self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask)
|
| 815 |
+
# + x
|
| 816 |
+
# )
|
| 817 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
| 818 |
+
# # temporal self attention
|
| 819 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
| 820 |
+
# elif self.temporal_crossattn_type == "skip":
|
| 821 |
+
# # no temporal cross and self attention
|
| 822 |
+
# pass
|
| 823 |
+
# else:
|
| 824 |
+
# raise NotImplementedError
|
| 825 |
+
|
| 826 |
+
# elif order == "sstt":
|
| 827 |
+
# # spatial self attention
|
| 828 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
| 829 |
+
# x = self.attn1(self.norm1(x)) + x
|
| 830 |
+
|
| 831 |
+
# # spatial cross attention
|
| 832 |
+
# context_ = context.repeat(t, 1, 1) if context is not None else None
|
| 833 |
+
# x = self.attn2(self.norm2(x), context=context_) + x
|
| 834 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
| 835 |
+
|
| 836 |
+
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
| 837 |
+
# if self.temporalcrossfirst:
|
| 838 |
+
# # temporal cross attention
|
| 839 |
+
# if self.temporal_crossattn_type == "crossattn":
|
| 840 |
+
# # if temporal_context is not None:
|
| 841 |
+
# temporal_context = context.repeat(h * w, 1, 1)
|
| 842 |
+
# x = (
|
| 843 |
+
# self.attn2_tmp(
|
| 844 |
+
# self.norm5(x), context=temporal_context, mask=mask
|
| 845 |
+
# )
|
| 846 |
+
# + x
|
| 847 |
+
# )
|
| 848 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
| 849 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
| 850 |
+
# elif self.temporal_crossattn_type == "skip":
|
| 851 |
+
# pass
|
| 852 |
+
# else:
|
| 853 |
+
# raise NotImplementedError
|
| 854 |
+
# # temporal self attention
|
| 855 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
| 856 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
| 857 |
+
# else:
|
| 858 |
+
# # temporal self attention
|
| 859 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
| 860 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
| 861 |
+
# # temporal cross attention
|
| 862 |
+
# if self.temporal_crossattn_type == "crossattn":
|
| 863 |
+
# if temporal_context is not None:
|
| 864 |
+
# temporal_context = context.repeat(h * w, 1, 1)
|
| 865 |
+
# x = (
|
| 866 |
+
# self.attn2_tmp(
|
| 867 |
+
# self.norm5(x), context=temporal_context, mask=mask
|
| 868 |
+
# )
|
| 869 |
+
# + x
|
| 870 |
+
# )
|
| 871 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
| 872 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
| 873 |
+
# elif self.temporal_crossattn_type == "skip":
|
| 874 |
+
# pass
|
| 875 |
+
# else:
|
| 876 |
+
# raise NotImplementedError
|
| 877 |
+
# else:
|
| 878 |
+
# raise NotImplementedError
|
| 879 |
+
|
| 880 |
+
# return x
|
| 881 |
+
|
| 882 |
+
# def _st_cross_attn_parallel(
|
| 883 |
+
# self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None
|
| 884 |
+
# ):
|
| 885 |
+
# """order: x -> Self Attn -> Cross Attn -> attn_s
|
| 886 |
+
# x -> Temp Self Attn -> attn_t
|
| 887 |
+
# x' = x + attn_s + attn_t
|
| 888 |
+
# """
|
| 889 |
+
# if no_temporal_attn is not None:
|
| 890 |
+
# raise NotImplementedError
|
| 891 |
+
|
| 892 |
+
# B, C, T, H, W = x.shape
|
| 893 |
+
# # spatial self attention
|
| 894 |
+
# h = x
|
| 895 |
+
# h = rearrange(h, "b c t h w -> (b t) (h w) c")
|
| 896 |
+
# h = self.attn1(self.norm1(h)) + h
|
| 897 |
+
# # spatial cross
|
| 898 |
+
# # context_ = context.repeat(T, 1, 1) if context is not None else None
|
| 899 |
+
# if context is not None:
|
| 900 |
+
# context_ = []
|
| 901 |
+
# for i in range(context.shape[0]):
|
| 902 |
+
# context_.append(context[i].unsqueeze(0).repeat(T, 1, 1))
|
| 903 |
+
# context_ = torch.cat(context_, dim=0)
|
| 904 |
+
# else:
|
| 905 |
+
# context_ = None
|
| 906 |
+
|
| 907 |
+
# h = self.attn2(self.norm2(h), context=context_) + h
|
| 908 |
+
# h = rearrange(h, "(b t) (h w) c -> b c t h w", b=B, h=H)
|
| 909 |
+
|
| 910 |
+
# # temporal self
|
| 911 |
+
# h2 = x
|
| 912 |
+
# h2 = rearrange(h2, "b c t h w -> (b h w) t c")
|
| 913 |
+
# h2 = self.attn1_tmp(self.norm4(h2)) # + h2
|
| 914 |
+
# h2 = rearrange(h2, "(b h w) t c -> b c t h w", b=B, h=H, w=W)
|
| 915 |
+
# out = h + h2
|
| 916 |
+
# return rearrange(out, "b c t h w -> (b h w) t c")
|
| 917 |
+
|
| 918 |
+
##############################################################################################################################################
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
def spatial_attn_reshape(x):
|
| 922 |
+
return rearrange(x, "b c t h w -> (b t) (h w) c")
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
def spatial_attn_reshape_back(x, b, h):
|
| 926 |
+
return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
def temporal_attn_reshape(x):
|
| 930 |
+
return rearrange(x, "b c t h w -> (b h w) t c")
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
def temporal_attn_reshape_back(x, b, h, w):
|
| 934 |
+
return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w)
|
| 935 |
+
|
| 936 |
+
|
| 937 |
+
def local_spatial_temporal_attn_reshape(x, window_size):
|
| 938 |
+
B, C, T, H, W = x.shape
|
| 939 |
+
NH = H // window_size
|
| 940 |
+
NW = W // window_size
|
| 941 |
+
# x = x.view(B, C, T, NH, window_size, NW, window_size)
|
| 942 |
+
# tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
|
| 943 |
+
# tokens = tokens.view(-1, window_size, window_size, C)
|
| 944 |
+
x = rearrange(
|
| 945 |
+
x,
|
| 946 |
+
"b c t (nh wh) (nw ww) -> b c t nh wh nw ww",
|
| 947 |
+
nh=NH,
|
| 948 |
+
nw=NW,
|
| 949 |
+
wh=window_size,
|
| 950 |
+
ww=window_size,
|
| 951 |
+
).contiguous() # # B, C, T, NH, NW, window_size, window_size
|
| 952 |
+
x = rearrange(
|
| 953 |
+
x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c"
|
| 954 |
+
) # (B, NH, NW) (T, window_size, window_size) C
|
| 955 |
+
return x
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
|
| 959 |
+
B, L, C = x.shape
|
| 960 |
+
NH = h // window_size
|
| 961 |
+
NW = w // window_size
|
| 962 |
+
x = rearrange(
|
| 963 |
+
x,
|
| 964 |
+
"(b nh nw) (t wh ww) c -> b c t nh wh nw ww",
|
| 965 |
+
b=b,
|
| 966 |
+
nh=NH,
|
| 967 |
+
nw=NW,
|
| 968 |
+
t=t,
|
| 969 |
+
wh=window_size,
|
| 970 |
+
ww=window_size,
|
| 971 |
+
)
|
| 972 |
+
x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)")
|
| 973 |
+
return x
|
| 974 |
+
|
| 975 |
+
|
| 976 |
+
class SpatialTemporalTransformer(nn.Module):
|
| 977 |
+
"""
|
| 978 |
+
Transformer block for video-like data (5D tensor).
|
| 979 |
+
First, project the input (aka embedding) with NO reshape.
|
| 980 |
+
Then apply standard transformer action.
|
| 981 |
+
The 5D -> 3D reshape operation will be done in the specific attention module.
|
| 982 |
+
"""
|
| 983 |
+
|
| 984 |
+
def __init__(
|
| 985 |
+
self,
|
| 986 |
+
in_channels,
|
| 987 |
+
n_heads,
|
| 988 |
+
d_head,
|
| 989 |
+
depth=1,
|
| 990 |
+
dropout=0.0,
|
| 991 |
+
context_dim=None,
|
| 992 |
+
# Temporal stuff
|
| 993 |
+
temporal_length=None,
|
| 994 |
+
image_length=None,
|
| 995 |
+
use_relative_position=True,
|
| 996 |
+
img_video_joint_train=False,
|
| 997 |
+
cross_attn_on_tempoal=False,
|
| 998 |
+
temporal_crossattn_type="selfattn",
|
| 999 |
+
order="stst",
|
| 1000 |
+
temporalcrossfirst=False,
|
| 1001 |
+
split_stcontext=False,
|
| 1002 |
+
temporal_context_dim=None,
|
| 1003 |
+
**kwargs,
|
| 1004 |
+
):
|
| 1005 |
+
super().__init__()
|
| 1006 |
+
|
| 1007 |
+
self.in_channels = in_channels
|
| 1008 |
+
inner_dim = n_heads * d_head
|
| 1009 |
+
|
| 1010 |
+
self.norm = Normalize(in_channels)
|
| 1011 |
+
self.proj_in = nn.Conv3d(
|
| 1012 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 1013 |
+
)
|
| 1014 |
+
|
| 1015 |
+
self.transformer_blocks = nn.ModuleList(
|
| 1016 |
+
[
|
| 1017 |
+
BasicTransformerBlockST(
|
| 1018 |
+
inner_dim,
|
| 1019 |
+
n_heads,
|
| 1020 |
+
d_head,
|
| 1021 |
+
dropout=dropout,
|
| 1022 |
+
# cross attn
|
| 1023 |
+
context_dim=context_dim,
|
| 1024 |
+
# temporal attn
|
| 1025 |
+
temporal_length=temporal_length,
|
| 1026 |
+
image_length=image_length,
|
| 1027 |
+
use_relative_position=use_relative_position,
|
| 1028 |
+
img_video_joint_train=img_video_joint_train,
|
| 1029 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
| 1030 |
+
order=order,
|
| 1031 |
+
temporalcrossfirst=temporalcrossfirst,
|
| 1032 |
+
split_stcontext=split_stcontext,
|
| 1033 |
+
temporal_context_dim=temporal_context_dim,
|
| 1034 |
+
**kwargs,
|
| 1035 |
+
)
|
| 1036 |
+
for d in range(depth)
|
| 1037 |
+
]
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
self.proj_out = zero_module(
|
| 1041 |
+
nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
def forward(self, x, context=None, temporal_context=None, **kwargs):
|
| 1045 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 1046 |
+
assert x.dim() == 5, f"x shape = {x.shape}"
|
| 1047 |
+
b, c, t, h, w = x.shape
|
| 1048 |
+
x_in = x
|
| 1049 |
+
|
| 1050 |
+
x = self.norm(x)
|
| 1051 |
+
x = self.proj_in(x)
|
| 1052 |
+
|
| 1053 |
+
for block in self.transformer_blocks:
|
| 1054 |
+
x = block(x, context=context, temporal_context=temporal_context, **kwargs)
|
| 1055 |
+
|
| 1056 |
+
x = self.proj_out(x)
|
| 1057 |
+
return x + x_in
|
| 1058 |
+
|
| 1059 |
+
|
| 1060 |
+
# ---------------------------------------------------------------------------------------------------
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
+
class STAttentionBlock2(nn.Module):
|
| 1064 |
+
def __init__(
|
| 1065 |
+
self,
|
| 1066 |
+
channels,
|
| 1067 |
+
num_heads=1,
|
| 1068 |
+
num_head_channels=-1,
|
| 1069 |
+
use_checkpoint=False, # not used, only used in ResBlock
|
| 1070 |
+
use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy
|
| 1071 |
+
temporal_length=16, # used in relative positional representation.
|
| 1072 |
+
image_length=8, # used for image-video joint training.
|
| 1073 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
| 1074 |
+
img_video_joint_train=False,
|
| 1075 |
+
# norm_type="groupnorm",
|
| 1076 |
+
attn_norm_type="group",
|
| 1077 |
+
use_tempoal_causal_attn=False,
|
| 1078 |
+
):
|
| 1079 |
+
"""
|
| 1080 |
+
version 1: guided_diffusion implemented version
|
| 1081 |
+
version 2: remove args input argument
|
| 1082 |
+
"""
|
| 1083 |
+
super().__init__()
|
| 1084 |
+
|
| 1085 |
+
if num_head_channels == -1:
|
| 1086 |
+
self.num_heads = num_heads
|
| 1087 |
+
else:
|
| 1088 |
+
assert (
|
| 1089 |
+
channels % num_head_channels == 0
|
| 1090 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 1091 |
+
self.num_heads = channels // num_head_channels
|
| 1092 |
+
self.use_checkpoint = use_checkpoint
|
| 1093 |
+
|
| 1094 |
+
self.temporal_length = temporal_length
|
| 1095 |
+
self.image_length = image_length
|
| 1096 |
+
self.use_relative_position = use_relative_position
|
| 1097 |
+
self.img_video_joint_train = img_video_joint_train
|
| 1098 |
+
self.attn_norm_type = attn_norm_type
|
| 1099 |
+
assert self.attn_norm_type in ["group", "no_norm"]
|
| 1100 |
+
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
| 1101 |
+
|
| 1102 |
+
if self.attn_norm_type == "group":
|
| 1103 |
+
self.norm_s = normalization(channels)
|
| 1104 |
+
self.norm_t = normalization(channels)
|
| 1105 |
+
|
| 1106 |
+
self.qkv_s = conv_nd(1, channels, channels * 3, 1)
|
| 1107 |
+
self.qkv_t = conv_nd(1, channels, channels * 3, 1)
|
| 1108 |
+
|
| 1109 |
+
if self.img_video_joint_train:
|
| 1110 |
+
mask = th.ones(
|
| 1111 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
| 1112 |
+
)
|
| 1113 |
+
mask[:, temporal_length:, :] = 0
|
| 1114 |
+
mask[:, :, temporal_length:] = 0
|
| 1115 |
+
self.register_buffer("mask", mask)
|
| 1116 |
+
else:
|
| 1117 |
+
self.mask = None
|
| 1118 |
+
|
| 1119 |
+
if use_new_attention_order:
|
| 1120 |
+
# split qkv before split heads
|
| 1121 |
+
self.attention_s = QKVAttention(self.num_heads)
|
| 1122 |
+
self.attention_t = QKVAttention(self.num_heads)
|
| 1123 |
+
else:
|
| 1124 |
+
# split heads before split qkv
|
| 1125 |
+
self.attention_s = QKVAttentionLegacy(self.num_heads)
|
| 1126 |
+
self.attention_t = QKVAttentionLegacy(self.num_heads)
|
| 1127 |
+
|
| 1128 |
+
if use_relative_position:
|
| 1129 |
+
self.relative_position_k = RelativePosition(
|
| 1130 |
+
num_units=channels // self.num_heads,
|
| 1131 |
+
max_relative_position=temporal_length,
|
| 1132 |
+
)
|
| 1133 |
+
self.relative_position_v = RelativePosition(
|
| 1134 |
+
num_units=channels // self.num_heads,
|
| 1135 |
+
max_relative_position=temporal_length,
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
+
self.proj_out_s = zero_module(
|
| 1139 |
+
conv_nd(1, channels, channels, 1)
|
| 1140 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
| 1141 |
+
self.proj_out_t = zero_module(
|
| 1142 |
+
conv_nd(1, channels, channels, 1)
|
| 1143 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
| 1144 |
+
|
| 1145 |
+
def forward(self, x, mask=None):
|
| 1146 |
+
b, c, t, h, w = x.shape
|
| 1147 |
+
|
| 1148 |
+
# spatial
|
| 1149 |
+
out = rearrange(x, "b c t h w -> (b t) c (h w)")
|
| 1150 |
+
if self.attn_norm_type == "no_norm":
|
| 1151 |
+
qkv = self.qkv_s(out)
|
| 1152 |
+
else:
|
| 1153 |
+
qkv = self.qkv_s(self.norm_s(out))
|
| 1154 |
+
out = self.attention_s(qkv)
|
| 1155 |
+
out = self.proj_out_s(out)
|
| 1156 |
+
out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
| 1157 |
+
x += out
|
| 1158 |
+
|
| 1159 |
+
# temporal
|
| 1160 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
| 1161 |
+
if self.attn_norm_type == "no_norm":
|
| 1162 |
+
qkv = self.qkv_t(out)
|
| 1163 |
+
else:
|
| 1164 |
+
qkv = self.qkv_t(self.norm_t(out))
|
| 1165 |
+
|
| 1166 |
+
# relative positional embedding
|
| 1167 |
+
if self.use_relative_position:
|
| 1168 |
+
len_q = qkv.size()[-1]
|
| 1169 |
+
len_k, len_v = len_q, len_q
|
| 1170 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
| 1171 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
| 1172 |
+
out = self.attention_t(
|
| 1173 |
+
qkv,
|
| 1174 |
+
rp=(k_rp, v_rp),
|
| 1175 |
+
mask=self.mask,
|
| 1176 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
| 1177 |
+
)
|
| 1178 |
+
else:
|
| 1179 |
+
out = self.attention_t(
|
| 1180 |
+
qkv,
|
| 1181 |
+
rp=None,
|
| 1182 |
+
mask=self.mask,
|
| 1183 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
| 1184 |
+
)
|
| 1185 |
+
|
| 1186 |
+
out = self.proj_out_t(out)
|
| 1187 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
| 1188 |
+
|
| 1189 |
+
return x + out
|
| 1190 |
+
|
| 1191 |
+
|
| 1192 |
+
# ---------------------------------------------------------------------------------------------------------------
|
| 1193 |
+
|
| 1194 |
+
|
| 1195 |
+
class QKVAttentionLegacy(nn.Module):
|
| 1196 |
+
"""
|
| 1197 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 1198 |
+
"""
|
| 1199 |
+
|
| 1200 |
+
def __init__(self, n_heads):
|
| 1201 |
+
super().__init__()
|
| 1202 |
+
self.n_heads = n_heads
|
| 1203 |
+
|
| 1204 |
+
def forward(self, qkv, rp=None, mask=None):
|
| 1205 |
+
"""
|
| 1206 |
+
Apply QKV attention.
|
| 1207 |
+
|
| 1208 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 1209 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 1210 |
+
"""
|
| 1211 |
+
if rp is not None or mask is not None:
|
| 1212 |
+
raise NotImplementedError
|
| 1213 |
+
bs, width, length = qkv.shape
|
| 1214 |
+
assert width % (3 * self.n_heads) == 0
|
| 1215 |
+
ch = width // (3 * self.n_heads)
|
| 1216 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 1217 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 1218 |
+
weight = th.einsum(
|
| 1219 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 1220 |
+
) # More stable with f16 than dividing afterwards
|
| 1221 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 1222 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 1223 |
+
return a.reshape(bs, -1, length)
|
| 1224 |
+
|
| 1225 |
+
@staticmethod
|
| 1226 |
+
def count_flops(model, _x, y):
|
| 1227 |
+
return count_flops_attn(model, _x, y)
|
| 1228 |
+
|
| 1229 |
+
|
| 1230 |
+
# ---------------------------------------------------------------------------------------------------------------
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
class QKVAttention(nn.Module):
|
| 1234 |
+
"""
|
| 1235 |
+
A module which performs QKV attention and splits in a different order.
|
| 1236 |
+
"""
|
| 1237 |
+
|
| 1238 |
+
def __init__(self, n_heads):
|
| 1239 |
+
super().__init__()
|
| 1240 |
+
self.n_heads = n_heads
|
| 1241 |
+
|
| 1242 |
+
def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
|
| 1243 |
+
"""
|
| 1244 |
+
Apply QKV attention.
|
| 1245 |
+
|
| 1246 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 1247 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 1248 |
+
"""
|
| 1249 |
+
bs, width, length = qkv.shape
|
| 1250 |
+
assert width % (3 * self.n_heads) == 0
|
| 1251 |
+
ch = width // (3 * self.n_heads)
|
| 1252 |
+
# print('qkv', qkv.size())
|
| 1253 |
+
qkv=qkv.contiguous()
|
| 1254 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 1255 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 1256 |
+
# print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)
|
| 1257 |
+
|
| 1258 |
+
weight = th.einsum(
|
| 1259 |
+
"bct,bcs->bts",
|
| 1260 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 1261 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 1262 |
+
) # More stable with f16 than dividing afterwards
|
| 1263 |
+
# weight:[b,t,s] b=bs*n_heads*T
|
| 1264 |
+
|
| 1265 |
+
if rp is not None:
|
| 1266 |
+
k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48]
|
| 1267 |
+
weight2 = th.einsum(
|
| 1268 |
+
"bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp
|
| 1269 |
+
)
|
| 1270 |
+
weight += weight2
|
| 1271 |
+
|
| 1272 |
+
if use_tempoal_causal_attn:
|
| 1273 |
+
# weight = torch.tril(weight)
|
| 1274 |
+
assert mask is None, f"Not implemented for merging two masks!"
|
| 1275 |
+
mask = torch.tril(torch.ones(weight.shape))
|
| 1276 |
+
else:
|
| 1277 |
+
if mask is not None: # only keep upper-left matrix
|
| 1278 |
+
# process mask
|
| 1279 |
+
c, t, _ = weight.shape
|
| 1280 |
+
|
| 1281 |
+
if mask.shape[-1] > t:
|
| 1282 |
+
mask = mask[:, :t, :t]
|
| 1283 |
+
elif mask.shape[-1] < t: # pad ones
|
| 1284 |
+
mask_ = th.zeros([c, t, t]).to(mask.device)
|
| 1285 |
+
t_ = mask.shape[-1]
|
| 1286 |
+
mask_[:, :t_, :t_] = mask
|
| 1287 |
+
mask = mask_
|
| 1288 |
+
else:
|
| 1289 |
+
assert (
|
| 1290 |
+
weight.shape[-1] == mask.shape[-1]
|
| 1291 |
+
), f"weight={weight.shape}, mask={mask.shape}"
|
| 1292 |
+
|
| 1293 |
+
if mask is not None:
|
| 1294 |
+
INF = -1e8 # float('-inf')
|
| 1295 |
+
weight = weight.float().masked_fill(mask == 0, INF)
|
| 1296 |
+
|
| 1297 |
+
weight = F.softmax(weight.float(), dim=-1).type(
|
| 1298 |
+
weight.dtype
|
| 1299 |
+
) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
| 1300 |
+
# weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
| 1301 |
+
a = th.einsum(
|
| 1302 |
+
"bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)
|
| 1303 |
+
) # [256, 48, 8] [b, head_dim, t]
|
| 1304 |
+
|
| 1305 |
+
if rp is not None:
|
| 1306 |
+
a2 = th.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct
|
| 1307 |
+
a += a2
|
| 1308 |
+
|
| 1309 |
+
return a.reshape(bs, -1, length)
|
| 1310 |
+
|
| 1311 |
+
|
| 1312 |
+
# ---------------------------------------------------------------------------------------------------------------
|
| 1313 |
+
|
| 1314 |
+
# ---------------------------------------------------------------------------------------------------------------
|
base_encoder.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BaseVisionTower(nn.Module):
|
| 8 |
+
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
self.is_loaded = False
|
| 12 |
+
|
| 13 |
+
self.vision_tower_name = vision_tower_name
|
| 14 |
+
self.delay_load = delay_load
|
| 15 |
+
|
| 16 |
+
@abstractmethod
|
| 17 |
+
def load_model(self, device_map=None):
|
| 18 |
+
raise NotImplementedError("Subclasses must implement load_model")
|
| 19 |
+
|
| 20 |
+
@abstractmethod
|
| 21 |
+
def _forward(self, images):
|
| 22 |
+
raise NotImplementedError("Subclasses must implement forward")
|
| 23 |
+
|
| 24 |
+
def forward(self, images):
|
| 25 |
+
if type(images) is list:
|
| 26 |
+
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
| 27 |
+
else:
|
| 28 |
+
image_features = self._forward(images)
|
| 29 |
+
|
| 30 |
+
return image_features
|
| 31 |
+
|
| 32 |
+
@property
|
| 33 |
+
def dummy_feature(self):
|
| 34 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
| 35 |
+
|
| 36 |
+
@property
|
| 37 |
+
def dtype(self):
|
| 38 |
+
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
| 39 |
+
if hasattr(self.vision_tower, "dtype"):
|
| 40 |
+
return self.vision_tower.dtype
|
| 41 |
+
else:
|
| 42 |
+
params = list(self.vision_tower.parameters())
|
| 43 |
+
return (
|
| 44 |
+
params[0].dtype if len(params) > 0 else torch.float32
|
| 45 |
+
) # Default to torch.float32 if no parameters
|
| 46 |
+
|
| 47 |
+
@property
|
| 48 |
+
def device(self):
|
| 49 |
+
# Dynamically infer the device from the first parameter, if not explicitly specified
|
| 50 |
+
if hasattr(self.vision_tower, "device"):
|
| 51 |
+
return self.vision_tower.device
|
| 52 |
+
else:
|
| 53 |
+
params = list(self.vision_tower.parameters())
|
| 54 |
+
return (
|
| 55 |
+
params[0].device if len(params) > 0 else torch.device("cpu")
|
| 56 |
+
) # Default to CPU if no parameters
|
| 57 |
+
@property
|
| 58 |
+
def config(self):
|
| 59 |
+
if self.is_loaded:
|
| 60 |
+
return self.vision_tower.config
|
| 61 |
+
else:
|
| 62 |
+
return self.cfg_only
|
| 63 |
+
@property
|
| 64 |
+
def hidden_size(self):
|
| 65 |
+
try:
|
| 66 |
+
return self.config.hidden_size
|
| 67 |
+
except:
|
| 68 |
+
return self._hidden_size
|
builder.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from .siglip_encoder import SigLipVisionTower
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
| 6 |
+
|
| 7 |
+
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
| 8 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
| 9 |
+
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
| 10 |
+
|
| 11 |
+
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
| 12 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
| 13 |
+
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
| 14 |
+
#print('*************\n')
|
| 15 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
| 16 |
+
|
| 17 |
+
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
llava_arch.py
CHANGED
|
@@ -14,25 +14,48 @@
|
|
| 14 |
|
| 15 |
|
| 16 |
from abc import ABC, abstractmethod
|
| 17 |
-
|
|
|
|
| 18 |
import math
|
| 19 |
import re
|
| 20 |
import time
|
| 21 |
import torch
|
| 22 |
import torch.nn as nn
|
| 23 |
import torch.nn.functional as F
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from transformers import AutoTokenizer
|
| 28 |
|
| 29 |
-
from
|
| 30 |
|
| 31 |
-
from
|
| 32 |
-
from
|
| 33 |
import random
|
| 34 |
from .sae import SiglipAE
|
| 35 |
-
from .WindowTimeToTokenAttention import WindowTimeToTokenAttention
|
| 36 |
import numpy as np
|
| 37 |
import torch.nn.functional as F
|
| 38 |
import pdb
|
|
@@ -281,15 +304,13 @@ class LlavaMetaForCausalLM(ABC):
|
|
| 281 |
return expanded_x
|
| 282 |
|
| 283 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
#################################################################################
|
| 291 |
# Define the maximum batch size (1024 frames)
|
| 292 |
-
max_batch_size =
|
| 293 |
num_frames = videos_or_images.shape[0]
|
| 294 |
# Initialize a list to store the features from each batch
|
| 295 |
videos_or_images_features = []
|
|
@@ -312,47 +333,49 @@ class LlavaMetaForCausalLM(ABC):
|
|
| 312 |
else:
|
| 313 |
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
|
| 314 |
|
| 315 |
-
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)
|
| 316 |
all_videos_or_images_features = []
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
for idx, feat in enumerate(per_videos_or_images_features):
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
bc,ch,h,w=feat.shape
|
| 329 |
-
|
| 330 |
-
feat = feat.view(bc//4,ch,4,h,w)
|
| 331 |
-
if bc//4>24:
|
| 332 |
-
chunk_size = 24
|
| 333 |
-
chunks = torch.split(feat, chunk_size, dim=0)
|
| 334 |
-
interpolated_chunks = []
|
| 335 |
-
for chunk in chunks:
|
| 336 |
-
interpolated_chunk=self.get_model().sae(chunk).squeeze(2)
|
| 337 |
-
interpolated_chunks.append(interpolated_chunk)
|
| 338 |
-
feat = torch.cat(interpolated_chunks, dim=0)
|
| 339 |
-
del interpolated_chunks
|
| 340 |
-
del chunks
|
| 341 |
-
else:
|
| 342 |
-
feat=self.get_model().sae(feat).squeeze(2)
|
| 343 |
-
feat = feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
| 344 |
-
#print(feat.shape,end='3\n')
|
| 345 |
-
feat = self.get_model().mm_projector(feat)
|
| 346 |
-
#print(feat.shape,end='4\n')
|
| 347 |
-
# Post pooling
|
| 348 |
-
if idx in video_idx_in_batch:
|
| 349 |
-
#print('************************',idx,video_idx_in_batch)
|
| 350 |
-
feat = self.get_2dPool(feat)
|
| 351 |
-
all_videos_or_images_features.append(feat)
|
| 352 |
-
|
| 353 |
del per_videos_or_images_features
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
return all_videos_or_images_features
|
| 355 |
-
|
|
|
|
| 356 |
def interpolate(self,image_features):
|
| 357 |
b, num_tokens, dim = image_features.shape
|
| 358 |
|
|
@@ -383,6 +406,7 @@ class LlavaMetaForCausalLM(ABC):
|
|
| 383 |
return image_features
|
| 384 |
|
| 385 |
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):
|
|
|
|
| 386 |
vision_tower = self.get_vision_tower()
|
| 387 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
| 388 |
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
from abc import ABC, abstractmethod
|
| 17 |
+
import importlib.util
|
| 18 |
+
import os.path as osp
|
| 19 |
import math
|
| 20 |
import re
|
| 21 |
import time
|
| 22 |
import torch
|
| 23 |
import torch.nn as nn
|
| 24 |
import torch.nn.functional as F
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
from .builder import build_vision_tower
|
| 28 |
+
from .builder import build_vision_resampler
|
| 29 |
+
from .builder import build_vision_projector
|
| 30 |
+
except ModuleNotFoundError:
|
| 31 |
+
spec = importlib.util.spec_from_file_location(
|
| 32 |
+
"builder",
|
| 33 |
+
osp.join(osp.dirname(__file__), "builder.py"),
|
| 34 |
+
)
|
| 35 |
+
builder = importlib.util.module_from_spec(spec)
|
| 36 |
+
spec.loader.exec_module(builder)
|
| 37 |
+
build_vision_tower = getattr(
|
| 38 |
+
builder,
|
| 39 |
+
"build_vision_tower",
|
| 40 |
+
)
|
| 41 |
+
build_vision_resampler = getattr(
|
| 42 |
+
builder,
|
| 43 |
+
"build_vision_resampler",
|
| 44 |
+
)
|
| 45 |
+
build_vision_projector = getattr(
|
| 46 |
+
builder,
|
| 47 |
+
"build_vision_projector",
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
from transformers import AutoTokenizer
|
| 52 |
|
| 53 |
+
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 54 |
|
| 55 |
+
from .mm_utils import get_anyres_image_grid_shape
|
| 56 |
+
from .utils import rank0_print
|
| 57 |
import random
|
| 58 |
from .sae import SiglipAE
|
|
|
|
| 59 |
import numpy as np
|
| 60 |
import torch.nn.functional as F
|
| 61 |
import pdb
|
|
|
|
| 304 |
return expanded_x
|
| 305 |
|
| 306 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
| 307 |
+
pdb.set_trace()
|
| 308 |
+
if self.config.enable_chunk_prefill:
|
| 309 |
+
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
|
| 310 |
+
else:
|
| 311 |
+
chunk_size_for_vision_tower = 100000
|
|
|
|
|
|
|
| 312 |
# Define the maximum batch size (1024 frames)
|
| 313 |
+
max_batch_size = chunk_size_for_vision_tower
|
| 314 |
num_frames = videos_or_images.shape[0]
|
| 315 |
# Initialize a list to store the features from each batch
|
| 316 |
videos_or_images_features = []
|
|
|
|
| 333 |
else:
|
| 334 |
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
|
| 335 |
|
| 336 |
+
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)
|
| 337 |
all_videos_or_images_features = []
|
| 338 |
+
|
| 339 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
| 340 |
+
print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
| 341 |
+
|
| 342 |
+
del videos_or_images_features
|
| 343 |
+
torch.cuda.empty_cache()
|
| 344 |
+
|
| 345 |
+
chunk_size = chunk_size_for_vision_tower
|
| 346 |
+
all_feat_list = []
|
| 347 |
for idx, feat in enumerate(per_videos_or_images_features):
|
| 348 |
+
for i in range(0, feat.shape[0], chunk_size):
|
| 349 |
+
batched_feat = feat[i:i+chunk_size]
|
| 350 |
+
batched_feat=self.interpolate(batched_feat) # torch.Size([187, 1152, 24, 24])
|
| 351 |
+
if idx in video_idx_in_batch:
|
| 352 |
+
batched_feat = self.add_video(batched_feat) # torch.Size([188, 1152, 24, 24])
|
| 353 |
+
else:
|
| 354 |
+
batched_feat = self.add_image(batched_feat)
|
| 355 |
+
|
| 356 |
+
bc,ch,h,w = batched_feat.shape
|
| 357 |
+
batched_feat = batched_feat.view(bc//4,ch,4,h,w)
|
| 358 |
+
|
| 359 |
+
batched_feat=self.get_model().sae(batched_feat).squeeze(2)
|
| 360 |
+
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
| 361 |
+
batched_feat = self.get_model().mm_projector(batched_feat)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
batched_feat = self.get_2dPool(batched_feat)
|
| 365 |
+
all_feat_list.append(batched_feat)
|
| 366 |
+
|
| 367 |
+
feat = torch.cat(all_feat_list, dim=0)
|
| 368 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
| 369 |
+
print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
| 370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
del per_videos_or_images_features
|
| 372 |
+
del all_feat_list
|
| 373 |
+
torch.cuda.empty_cache()
|
| 374 |
+
|
| 375 |
+
all_videos_or_images_features.append(feat)
|
| 376 |
return all_videos_or_images_features
|
| 377 |
+
|
| 378 |
+
|
| 379 |
def interpolate(self,image_features):
|
| 380 |
b, num_tokens, dim = image_features.shape
|
| 381 |
|
|
|
|
| 406 |
return image_features
|
| 407 |
|
| 408 |
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):
|
| 409 |
+
pdb.set_trace()
|
| 410 |
vision_tower = self.get_vision_tower()
|
| 411 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
| 412 |
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
llava_qwen.py
CHANGED
|
@@ -21,7 +21,7 @@ import transformers
|
|
| 21 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
| 22 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 23 |
from transformers.generation.utils import GenerateOutput
|
| 24 |
-
from
|
| 25 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
| 26 |
import pdb
|
| 27 |
import time
|
|
@@ -211,6 +211,7 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 211 |
time_token_end_indices=None,
|
| 212 |
block_size_chosed=None,
|
| 213 |
prev_blocks_num=None,
|
|
|
|
| 214 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 215 |
|
| 216 |
block_size = block_size_chosed
|
|
@@ -218,7 +219,6 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 218 |
visual_token_end_pos = visual_token_end_pos
|
| 219 |
visual_len = visual_token_end_pos - visual_token_start_pos
|
| 220 |
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4)
|
| 221 |
-
# print(f'block_size: {block_size}, num_blocks: {num_blocks}')
|
| 222 |
|
| 223 |
# streaming inps
|
| 224 |
blocks_positions = [[(0, 0, visual_token_start_pos)]]
|
|
@@ -254,10 +254,10 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 254 |
suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :]
|
| 255 |
num_visual_tokens = visual_embeds.size(1)
|
| 256 |
|
| 257 |
-
all_past_key_values = [[] for _ in range(len(self.model.layers))]
|
| 258 |
prefix_past_key_values = []
|
| 259 |
|
| 260 |
-
torch.cuda.reset_peak_memory_stats()
|
| 261 |
|
| 262 |
if prefix_embeds.size(1) > 0:
|
| 263 |
pkv = self.process_block(prefix_embeds, bsz=bsz, device=device)
|
|
@@ -288,16 +288,15 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 288 |
|
| 289 |
block_streaming_past_key_values_part1 = prefix_past_key_values
|
| 290 |
position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device)
|
| 291 |
-
block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))]
|
| 292 |
position_ids_part2 = torch.tensor([], dtype=torch.long, device=device)
|
| 293 |
block_streaming_past_key_values_part3=None
|
| 294 |
position_ids_part3 = None
|
| 295 |
|
| 296 |
query_position_ids = None
|
| 297 |
for idx, single_block in enumerate(blocks_positions[:]):
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
if idx <= prev_blocks_num:
|
| 301 |
continue
|
| 302 |
|
| 303 |
b_start, _, _ = single_block[0]
|
|
@@ -312,13 +311,15 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 312 |
true_block_length = b_end - b_start
|
| 313 |
|
| 314 |
block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values]
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
|
| 323 |
block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3)
|
| 324 |
|
|
@@ -337,8 +338,11 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 337 |
key_this_block, val_this_block = pkv[i]
|
| 338 |
key_this_block = key_this_block[:,:,length_before_chunk:,:]
|
| 339 |
val_this_block = val_this_block[:,:,length_before_chunk:,:]
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
time_keys_list = []
|
| 344 |
time_vals_list = []
|
|
@@ -371,6 +375,9 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 371 |
values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2)
|
| 372 |
merged_pkv.append((keys, values))
|
| 373 |
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
pkv = merged_pkv
|
| 376 |
del block_streaming_past_key_values
|
|
@@ -383,6 +390,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 383 |
# TODO: bi-decoding acceleration
|
| 384 |
mixed_prefill_past_key_values = pkv
|
| 385 |
prefill_len = visual_token_end_pos
|
|
|
|
|
|
|
| 386 |
|
| 387 |
# Process suffix
|
| 388 |
if suffix_embeds.size(1) > 0:
|
|
@@ -404,6 +413,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 404 |
return_dict=return_dict,
|
| 405 |
# blocks_positions=None,
|
| 406 |
)
|
|
|
|
|
|
|
| 407 |
del mixed_prefill_past_key_values
|
| 408 |
torch.cuda.empty_cache()
|
| 409 |
|
|
@@ -508,12 +519,17 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 508 |
)
|
| 509 |
|
| 510 |
if inputs_embeds is None:
|
|
|
|
| 511 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
| 512 |
|
| 513 |
-
if self.config.
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
return self.forward_streaming(
|
| 518 |
input_ids=input_ids,
|
| 519 |
attention_mask=attention_mask,
|
|
@@ -533,10 +549,11 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 533 |
frames_num=frames_num,
|
| 534 |
time_token_indices=time_token_indices,
|
| 535 |
time_token_end_indices=time_token_end_indices,
|
| 536 |
-
block_size_chosed=
|
| 537 |
-
prev_blocks_num=
|
|
|
|
| 538 |
)
|
| 539 |
-
elif
|
| 540 |
return self.forward_mask(
|
| 541 |
input_ids=input_ids,
|
| 542 |
attention_mask=attention_mask,
|
|
@@ -584,6 +601,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 584 |
**kwargs,
|
| 585 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 586 |
|
|
|
|
|
|
|
| 587 |
position_ids = kwargs.pop("position_ids", None)
|
| 588 |
attention_mask = kwargs.pop("attention_mask", None)
|
| 589 |
|
|
@@ -631,6 +650,7 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
| 631 |
sample_fps=1,
|
| 632 |
max_sample_fps=4,
|
| 633 |
generation_config={}):
|
|
|
|
| 634 |
|
| 635 |
# prepare text input
|
| 636 |
conv = conv_templates["qwen_1_5"].copy()
|
|
|
|
| 21 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
| 22 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 23 |
from transformers.generation.utils import GenerateOutput
|
| 24 |
+
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
| 25 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
| 26 |
import pdb
|
| 27 |
import time
|
|
|
|
| 211 |
time_token_end_indices=None,
|
| 212 |
block_size_chosed=None,
|
| 213 |
prev_blocks_num=None,
|
| 214 |
+
offload: Optional[bool] = None,
|
| 215 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 216 |
|
| 217 |
block_size = block_size_chosed
|
|
|
|
| 219 |
visual_token_end_pos = visual_token_end_pos
|
| 220 |
visual_len = visual_token_end_pos - visual_token_start_pos
|
| 221 |
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4)
|
|
|
|
| 222 |
|
| 223 |
# streaming inps
|
| 224 |
blocks_positions = [[(0, 0, visual_token_start_pos)]]
|
|
|
|
| 254 |
suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :]
|
| 255 |
num_visual_tokens = visual_embeds.size(1)
|
| 256 |
|
| 257 |
+
all_past_key_values = [[] for _ in range(len(self.model.layers))]
|
| 258 |
prefix_past_key_values = []
|
| 259 |
|
| 260 |
+
# torch.cuda.reset_peak_memory_stats()
|
| 261 |
|
| 262 |
if prefix_embeds.size(1) > 0:
|
| 263 |
pkv = self.process_block(prefix_embeds, bsz=bsz, device=device)
|
|
|
|
| 288 |
|
| 289 |
block_streaming_past_key_values_part1 = prefix_past_key_values
|
| 290 |
position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device)
|
| 291 |
+
block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))]
|
| 292 |
position_ids_part2 = torch.tensor([], dtype=torch.long, device=device)
|
| 293 |
block_streaming_past_key_values_part3=None
|
| 294 |
position_ids_part3 = None
|
| 295 |
|
| 296 |
query_position_ids = None
|
| 297 |
for idx, single_block in enumerate(blocks_positions[:]):
|
| 298 |
+
|
| 299 |
+
if idx == 0 or idx <= prev_blocks_num:
|
|
|
|
| 300 |
continue
|
| 301 |
|
| 302 |
b_start, _, _ = single_block[0]
|
|
|
|
| 311 |
true_block_length = b_end - b_start
|
| 312 |
|
| 313 |
block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values]
|
| 314 |
+
|
| 315 |
+
if offload:
|
| 316 |
+
block_streaming_past_key_values_part3 = [
|
| 317 |
+
[
|
| 318 |
+
(t[0].to(device=device), t[1].to(device=device))
|
| 319 |
+
for t in sublist
|
| 320 |
+
]
|
| 321 |
+
for sublist in block_streaming_past_key_values_part3
|
| 322 |
+
]
|
| 323 |
|
| 324 |
block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3)
|
| 325 |
|
|
|
|
| 338 |
key_this_block, val_this_block = pkv[i]
|
| 339 |
key_this_block = key_this_block[:,:,length_before_chunk:,:]
|
| 340 |
val_this_block = val_this_block[:,:,length_before_chunk:,:]
|
| 341 |
+
|
| 342 |
+
if offload:
|
| 343 |
+
all_past_key_values[i].append( (key_this_block.to('cpu'), val_this_block.to('cpu')) )
|
| 344 |
+
else:
|
| 345 |
+
all_past_key_values[i].append( (key_this_block, val_this_block) )
|
| 346 |
|
| 347 |
time_keys_list = []
|
| 348 |
time_vals_list = []
|
|
|
|
| 375 |
values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2)
|
| 376 |
merged_pkv.append((keys, values))
|
| 377 |
|
| 378 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
| 379 |
+
print(f"prefill 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
| 380 |
+
|
| 381 |
|
| 382 |
pkv = merged_pkv
|
| 383 |
del block_streaming_past_key_values
|
|
|
|
| 390 |
# TODO: bi-decoding acceleration
|
| 391 |
mixed_prefill_past_key_values = pkv
|
| 392 |
prefill_len = visual_token_end_pos
|
| 393 |
+
|
| 394 |
+
# torch.cuda.reset_peak_memory_stats()
|
| 395 |
|
| 396 |
# Process suffix
|
| 397 |
if suffix_embeds.size(1) > 0:
|
|
|
|
| 413 |
return_dict=return_dict,
|
| 414 |
# blocks_positions=None,
|
| 415 |
)
|
| 416 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
| 417 |
+
print(f"decoding 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
| 418 |
del mixed_prefill_past_key_values
|
| 419 |
torch.cuda.empty_cache()
|
| 420 |
|
|
|
|
| 519 |
)
|
| 520 |
|
| 521 |
if inputs_embeds is None:
|
| 522 |
+
pdb.set_trace()
|
| 523 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
| 524 |
|
| 525 |
+
if self.config.enable_chunk_prefill:
|
| 526 |
+
|
| 527 |
+
prefill_mode = self.config.prefill_config['chunk_prefill_mode']
|
| 528 |
+
chunk_size = self.config.prefill_config['chunk_size']
|
| 529 |
+
step_size = self.config.prefill_config['step_size']
|
| 530 |
+
offload = self.config.prefill_config['offload']
|
| 531 |
+
|
| 532 |
+
if prefill_mode=='streaming':
|
| 533 |
return self.forward_streaming(
|
| 534 |
input_ids=input_ids,
|
| 535 |
attention_mask=attention_mask,
|
|
|
|
| 549 |
frames_num=frames_num,
|
| 550 |
time_token_indices=time_token_indices,
|
| 551 |
time_token_end_indices=time_token_end_indices,
|
| 552 |
+
block_size_chosed=chunk_size,
|
| 553 |
+
prev_blocks_num=chunk_size - step_size,
|
| 554 |
+
offload=offload,
|
| 555 |
)
|
| 556 |
+
elif prefill_mode=='mask':
|
| 557 |
return self.forward_mask(
|
| 558 |
input_ids=input_ids,
|
| 559 |
attention_mask=attention_mask,
|
|
|
|
| 601 |
**kwargs,
|
| 602 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 603 |
|
| 604 |
+
|
| 605 |
+
|
| 606 |
position_ids = kwargs.pop("position_ids", None)
|
| 607 |
attention_mask = kwargs.pop("attention_mask", None)
|
| 608 |
|
|
|
|
| 650 |
sample_fps=1,
|
| 651 |
max_sample_fps=4,
|
| 652 |
generation_config={}):
|
| 653 |
+
pdb.set_trace()
|
| 654 |
|
| 655 |
# prepare text input
|
| 656 |
conv = conv_templates["qwen_1_5"].copy()
|
mm_utils.py
CHANGED
|
@@ -419,6 +419,7 @@ class KeywordsStoppingCriteria(StoppingCriteria):
|
|
| 419 |
|
| 420 |
from decord import VideoReader, cpu
|
| 421 |
def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
|
|
|
| 422 |
if isinstance(video_path, str):
|
| 423 |
vr = VideoReader(video_path, ctx=cpu(0))
|
| 424 |
else:
|
|
@@ -431,22 +432,25 @@ def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
|
| 431 |
return None, None, []
|
| 432 |
|
| 433 |
video_fps = fps
|
| 434 |
-
step = round(avg_fps_from_decord / video_fps) if video_fps > 0 and avg_fps_from_decord > 0 else 1
|
| 435 |
-
frame_idx = [i for i in range(0, total_frame_num, step)]
|
| 436 |
-
|
| 437 |
fps_upbound = max_fps
|
| 438 |
frames_upbound = max_frames_num
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
timestamps = [round(idx / avg_fps_from_decord, 1) for idx in frame_idx]
|
| 452 |
video = vr.get_batch(frame_idx).asnumpy()
|
|
|
|
| 419 |
|
| 420 |
from decord import VideoReader, cpu
|
| 421 |
def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
| 422 |
+
|
| 423 |
if isinstance(video_path, str):
|
| 424 |
vr = VideoReader(video_path, ctx=cpu(0))
|
| 425 |
else:
|
|
|
|
| 432 |
return None, None, []
|
| 433 |
|
| 434 |
video_fps = fps
|
|
|
|
|
|
|
|
|
|
| 435 |
fps_upbound = max_fps
|
| 436 |
frames_upbound = max_frames_num
|
| 437 |
+
if fps is not None:
|
| 438 |
+
step = round(avg_fps_from_decord / video_fps) if video_fps > 0 and avg_fps_from_decord > 0 else 1
|
| 439 |
+
frame_idx = [i for i in range(0, total_frame_num, step)]
|
| 440 |
+
|
| 441 |
+
if fps_upbound is not None:
|
| 442 |
+
higher_fps = min(frames_upbound//len(frame_idx), fps_upbound)
|
| 443 |
+
if higher_fps > video_fps:
|
| 444 |
+
higher_steps = round(avg_fps_from_decord / higher_fps)
|
| 445 |
+
frame_idx = [i for i in range(0, total_frame_num, higher_steps)]
|
| 446 |
+
|
| 447 |
+
if frames_upbound > 0:
|
| 448 |
+
if len(frame_idx) > frames_upbound:
|
| 449 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, frames_upbound, dtype=int)
|
| 450 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 451 |
+
else: # use uiform sample
|
| 452 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, frames_upbound, dtype=int)
|
| 453 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 454 |
|
| 455 |
timestamps = [round(idx / avg_fps_from_decord, 1) for idx in frame_idx]
|
| 456 |
video = vr.get_batch(frame_idx).asnumpy()
|
modeling_qwen2.py
CHANGED
|
@@ -688,7 +688,10 @@ class Qwen2SdpaAttention(Qwen2Attention):
|
|
| 688 |
|
| 689 |
try:
|
| 690 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, key_position_ids)
|
| 691 |
-
except:
|
|
|
|
|
|
|
|
|
|
| 692 |
pdb.set_trace()
|
| 693 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 694 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
| 688 |
|
| 689 |
try:
|
| 690 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, key_position_ids)
|
| 691 |
+
except Exception as e:
|
| 692 |
+
print(e)
|
| 693 |
+
import traceback
|
| 694 |
+
traceback.print_exc()
|
| 695 |
pdb.set_trace()
|
| 696 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 697 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
sae.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from .sae_utils import SamePadConv3d,Normalize,SiLU,TemporalAttention,AttnBlock3D,MultiHeadAttention3D,TemporalAttention_lin
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import pdb
|
| 6 |
+
|
| 7 |
+
class SiglipAE(nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
+
temporal_stride=2
|
| 11 |
+
norm_type = "group"
|
| 12 |
+
|
| 13 |
+
self.temporal_encoding = nn.Parameter(torch.randn((4,1152)))
|
| 14 |
+
#self.vision_tower=SigLipVisionTower('google/siglip-so400m-patch14-384')
|
| 15 |
+
self.encoder=nn.Sequential(
|
| 16 |
+
AttnBlock3D(1152),
|
| 17 |
+
TemporalAttention(1152),
|
| 18 |
+
|
| 19 |
+
SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
|
| 20 |
+
|
| 21 |
+
AttnBlock3D(1152),
|
| 22 |
+
TemporalAttention(1152),
|
| 23 |
+
|
| 24 |
+
SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
|
| 25 |
+
|
| 26 |
+
)
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
b_,c_,t_,h_,w_=x.shape
|
| 29 |
+
|
| 30 |
+
temporal_encoding = self.temporal_encoding.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
| 31 |
+
temporal_encoding = temporal_encoding.expand(b_, -1, -1, h_, w_) # (B, T, C, H, W)
|
| 32 |
+
temporal_encoding = temporal_encoding.permute(0, 2, 1, 3, 4) # (B, C, T, H, W)
|
| 33 |
+
x = x + temporal_encoding
|
| 34 |
+
|
| 35 |
+
x=self.encoder(x)
|
| 36 |
+
return x
|
| 37 |
+
# image=torch.randn(1,1152,4,24,24).to('cuda')
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# model = SiglipAE().to('cuda')
|
| 41 |
+
# model.load_state_dict(torch.load('encoder.pth'),strict=False)
|
| 42 |
+
|
| 43 |
+
# image=model(image)
|
| 44 |
+
|
| 45 |
+
# print(image.shape)
|
sae_utils.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers.activations import ACT2FN
|
| 5 |
+
from .attention_temporal_videoae import *
|
| 6 |
+
from einops import rearrange, reduce, repeat
|
| 7 |
+
|
| 8 |
+
try:
|
| 9 |
+
import xformers
|
| 10 |
+
import xformers.ops as xops
|
| 11 |
+
|
| 12 |
+
XFORMERS_IS_AVAILBLE = True
|
| 13 |
+
except:
|
| 14 |
+
XFORMERS_IS_AVAILBLE = False
|
| 15 |
+
|
| 16 |
+
def silu(x):
|
| 17 |
+
# swish
|
| 18 |
+
return x * torch.sigmoid(x)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class SiLU(nn.Module):
|
| 22 |
+
def __init__(self):
|
| 23 |
+
super(SiLU, self).__init__()
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
return silu(x)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def Normalize(in_channels, norm_type="group"):
|
| 30 |
+
assert norm_type in ["group", "batch",'layer']
|
| 31 |
+
if norm_type == "group":
|
| 32 |
+
return torch.nn.GroupNorm(
|
| 33 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
| 34 |
+
)
|
| 35 |
+
elif norm_type == "batch":
|
| 36 |
+
return torch.nn.SyncBatchNorm(in_channels)
|
| 37 |
+
elif norm_type == "layer":
|
| 38 |
+
return nn.LayerNorm(in_channels)
|
| 39 |
+
|
| 40 |
+
class SamePadConv3d(nn.Module):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
in_channels,
|
| 44 |
+
out_channels,
|
| 45 |
+
kernel_size,
|
| 46 |
+
stride=1,
|
| 47 |
+
bias=True,
|
| 48 |
+
padding_type="replicate",
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
if isinstance(kernel_size, int):
|
| 52 |
+
kernel_size = (kernel_size,) * 3
|
| 53 |
+
if isinstance(stride, int):
|
| 54 |
+
stride = (stride,) * 3
|
| 55 |
+
|
| 56 |
+
# assumes that the input shape is divisible by stride
|
| 57 |
+
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
| 58 |
+
pad_input = []
|
| 59 |
+
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
| 60 |
+
pad_input.append((p // 2 + p % 2, p // 2))
|
| 61 |
+
pad_input = sum(pad_input, tuple())
|
| 62 |
+
|
| 63 |
+
self.pad_input = pad_input
|
| 64 |
+
self.padding_type = padding_type
|
| 65 |
+
|
| 66 |
+
self.conv = nn.Conv3d(
|
| 67 |
+
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
tp=x.dtype
|
| 72 |
+
x = x.float()
|
| 73 |
+
|
| 74 |
+
# 执行填充操作
|
| 75 |
+
x_padded = F.pad(x, self.pad_input, mode=self.padding_type)
|
| 76 |
+
|
| 77 |
+
# 如果需要,将结果转换回 BFloat16
|
| 78 |
+
x_padded = x_padded.to(tp)
|
| 79 |
+
|
| 80 |
+
return self.conv(x_padded)
|
| 81 |
+
|
| 82 |
+
class TemporalAttention(nn.Module):
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
channels,
|
| 86 |
+
num_heads=1,
|
| 87 |
+
num_head_channels=-1,
|
| 88 |
+
max_temporal_length=64,
|
| 89 |
+
):
|
| 90 |
+
"""
|
| 91 |
+
a clean multi-head temporal attention
|
| 92 |
+
"""
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
if num_head_channels == -1:
|
| 96 |
+
self.num_heads = num_heads
|
| 97 |
+
else:
|
| 98 |
+
assert (
|
| 99 |
+
channels % num_head_channels == 0
|
| 100 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 101 |
+
self.num_heads = channels // num_head_channels
|
| 102 |
+
|
| 103 |
+
self.norm = Normalize(channels)
|
| 104 |
+
self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
| 105 |
+
self.attention = QKVAttention(self.num_heads)
|
| 106 |
+
self.relative_position_k = RelativePosition(
|
| 107 |
+
num_units=channels // self.num_heads,
|
| 108 |
+
max_relative_position=max_temporal_length,
|
| 109 |
+
)
|
| 110 |
+
self.relative_position_v = RelativePosition(
|
| 111 |
+
num_units=channels // self.num_heads,
|
| 112 |
+
max_relative_position=max_temporal_length,
|
| 113 |
+
)
|
| 114 |
+
self.proj_out = zero_module(
|
| 115 |
+
conv_nd(1, channels, channels, 1)
|
| 116 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
| 117 |
+
|
| 118 |
+
def forward(self, x, mask=None):
|
| 119 |
+
b, c, t, h, w = x.shape
|
| 120 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
| 121 |
+
# torch.Size([4608, 1152, 2])1
|
| 122 |
+
# torch.Size([4608, 3456, 2])2
|
| 123 |
+
# torch.Size([4608, 1152, 2])3
|
| 124 |
+
# torch.Size([4608, 1152, 2])4
|
| 125 |
+
#print(out.shape,end='1\n')
|
| 126 |
+
qkv = self.qkv(self.norm(out))
|
| 127 |
+
#print(qkv.shape,end='2\n')
|
| 128 |
+
|
| 129 |
+
len_q = qkv.size()[-1]
|
| 130 |
+
len_k, len_v = len_q, len_q
|
| 131 |
+
|
| 132 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
| 133 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
| 134 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
| 135 |
+
#print(out.shape,end='3\n')
|
| 136 |
+
out = self.proj_out(out)
|
| 137 |
+
#print(out.shape,end='4\n')
|
| 138 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
| 139 |
+
|
| 140 |
+
return x + out
|
| 141 |
+
class TemporalAttention_lin(nn.Module):
|
| 142 |
+
def __init__(
|
| 143 |
+
self,
|
| 144 |
+
channels,
|
| 145 |
+
num_heads=8,
|
| 146 |
+
num_head_channels=-1,
|
| 147 |
+
max_temporal_length=64,
|
| 148 |
+
):
|
| 149 |
+
"""
|
| 150 |
+
a clean multi-head temporal attention
|
| 151 |
+
"""
|
| 152 |
+
super().__init__()
|
| 153 |
+
|
| 154 |
+
if num_head_channels == -1:
|
| 155 |
+
self.num_heads = num_heads
|
| 156 |
+
else:
|
| 157 |
+
assert (
|
| 158 |
+
channels % num_head_channels == 0
|
| 159 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 160 |
+
self.num_heads = channels // num_head_channels
|
| 161 |
+
|
| 162 |
+
self.norm = nn.LayerNorm(channels)
|
| 163 |
+
#self.norm = Normalize(channels)
|
| 164 |
+
#self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
| 165 |
+
self.qkv = nn.Linear(channels, channels * 3)
|
| 166 |
+
self.attention = QKVAttention(self.num_heads)
|
| 167 |
+
self.relative_position_k = RelativePosition(
|
| 168 |
+
num_units=channels // self.num_heads,
|
| 169 |
+
max_relative_position=max_temporal_length,
|
| 170 |
+
)
|
| 171 |
+
self.relative_position_v = RelativePosition(
|
| 172 |
+
num_units=channels // self.num_heads,
|
| 173 |
+
max_relative_position=max_temporal_length,
|
| 174 |
+
)
|
| 175 |
+
self.proj_out = nn.Linear(channels, channels)
|
| 176 |
+
|
| 177 |
+
def forward(self, x, mask=None):
|
| 178 |
+
b, c, t, h, w = x.shape
|
| 179 |
+
out = rearrange(x, "b c t h w -> (b h w) t c")
|
| 180 |
+
# torch.Size([4608, 1152, 2])1
|
| 181 |
+
# torch.Size([4608, 3456, 2])2
|
| 182 |
+
# torch.Size([4608, 1152, 2])3
|
| 183 |
+
# torch.Size([4608, 1152, 2])4
|
| 184 |
+
#print(out.shape,end='1\n')
|
| 185 |
+
qkv = self.qkv(self.norm(out)).transpose(-1, -2)
|
| 186 |
+
#print(qkv.shape,end='2\n')
|
| 187 |
+
|
| 188 |
+
len_q = qkv.size()[-1]
|
| 189 |
+
len_k, len_v = len_q, len_q
|
| 190 |
+
|
| 191 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
| 192 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
| 193 |
+
|
| 194 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
| 195 |
+
|
| 196 |
+
out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2)
|
| 197 |
+
|
| 198 |
+
#print(out.shape,end='4\n')
|
| 199 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
| 200 |
+
|
| 201 |
+
return x + out
|
| 202 |
+
|
| 203 |
+
class AttnBlock3D(nn.Module):
|
| 204 |
+
def __init__(self, in_channels):
|
| 205 |
+
super().__init__()
|
| 206 |
+
self.in_channels = in_channels
|
| 207 |
+
|
| 208 |
+
self.norm = Normalize(in_channels)
|
| 209 |
+
self.q = torch.nn.Conv3d(
|
| 210 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 211 |
+
)
|
| 212 |
+
self.k = torch.nn.Conv3d(
|
| 213 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 214 |
+
)
|
| 215 |
+
self.v = torch.nn.Conv3d(
|
| 216 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 217 |
+
)
|
| 218 |
+
self.proj_out = torch.nn.Conv3d(
|
| 219 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def forward(self, x):
|
| 223 |
+
h_ = x
|
| 224 |
+
# self.norm.to(x.device)
|
| 225 |
+
# self.norm.to(x.dtype)
|
| 226 |
+
h_ = self.norm(h_)
|
| 227 |
+
q = self.q(h_)
|
| 228 |
+
k = self.k(h_)
|
| 229 |
+
v = self.v(h_)
|
| 230 |
+
|
| 231 |
+
b, c, t, h, w = q.shape
|
| 232 |
+
# q = q.reshape(b,c,h*w) # bcl
|
| 233 |
+
# q = q.permute(0,2,1) # bcl -> blc l=hw
|
| 234 |
+
# k = k.reshape(b,c,h*w) # bcl
|
| 235 |
+
q = rearrange(q, "b c t h w -> (b t) (h w) c") # blc
|
| 236 |
+
k = rearrange(k, "b c t h w -> (b t) c (h w)") # bcl
|
| 237 |
+
|
| 238 |
+
w_ = torch.bmm(q, k) # b,l,l
|
| 239 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 240 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 241 |
+
|
| 242 |
+
# v = v.reshape(b,c,h*w)
|
| 243 |
+
v = rearrange(v, "b c t h w -> (b t) c (h w)") # bcl
|
| 244 |
+
|
| 245 |
+
# attend to values
|
| 246 |
+
w_ = w_.permute(0, 2, 1) # bll
|
| 247 |
+
h_ = torch.bmm(v, w_) # bcl
|
| 248 |
+
|
| 249 |
+
# h_ = h_.reshape(b,c,h,w)
|
| 250 |
+
h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
| 251 |
+
|
| 252 |
+
h_ = self.proj_out(h_)
|
| 253 |
+
|
| 254 |
+
return x + h_
|
| 255 |
+
|
| 256 |
+
class MultiHeadAttention3D(nn.Module):
|
| 257 |
+
def __init__(self, in_channels, num_heads=8):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.in_channels = in_channels
|
| 260 |
+
self.num_heads = num_heads
|
| 261 |
+
self.head_dim = in_channels // num_heads
|
| 262 |
+
|
| 263 |
+
assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads"
|
| 264 |
+
|
| 265 |
+
self.norm = nn.LayerNorm(in_channels)
|
| 266 |
+
self.q_linear = nn.Linear(in_channels, in_channels)
|
| 267 |
+
self.k_linear = nn.Linear(in_channels, in_channels)
|
| 268 |
+
self.v_linear = nn.Linear(in_channels, in_channels)
|
| 269 |
+
self.proj_out = nn.Linear(in_channels, in_channels)
|
| 270 |
+
|
| 271 |
+
def forward(self, x):
|
| 272 |
+
b, c, t, h, w = x.shape
|
| 273 |
+
#print(x.shape)
|
| 274 |
+
# Normalize and reshape input
|
| 275 |
+
h_ = rearrange(x, "b c t h w -> (b t) (h w) c")
|
| 276 |
+
h_ = self.norm(h_)
|
| 277 |
+
|
| 278 |
+
# Linear projections
|
| 279 |
+
q = self.q_linear(h_)
|
| 280 |
+
k = self.k_linear(h_)
|
| 281 |
+
v = self.v_linear(h_)
|
| 282 |
+
|
| 283 |
+
# Reshape to multi-head
|
| 284 |
+
q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads)
|
| 285 |
+
k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads)
|
| 286 |
+
v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads)
|
| 287 |
+
|
| 288 |
+
# Scaled Dot-Product Attention
|
| 289 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
|
| 290 |
+
attn = F.softmax(scores, dim=-1)
|
| 291 |
+
|
| 292 |
+
# Apply attention to values
|
| 293 |
+
out = torch.matmul(attn, v)
|
| 294 |
+
out = rearrange(out, "b h l d -> b l (h d)")
|
| 295 |
+
|
| 296 |
+
# Project back to original dimension
|
| 297 |
+
out = self.proj_out(out)
|
| 298 |
+
|
| 299 |
+
# Reshape back to original shape
|
| 300 |
+
out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t)
|
| 301 |
+
#print(out.shape)
|
| 302 |
+
return x + out
|
siglip_encoder.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch import nn
|
| 4 |
+
from typing import Optional, Tuple, Union, Dict
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from functools import partial, reduce
|
| 7 |
+
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
| 8 |
+
|
| 9 |
+
from .base_encoder import BaseVisionTower
|
| 10 |
+
import torch.distributed as dist
|
| 11 |
+
# --data_path /share/shuyan/video_traindata/anno/\{cinepine_order\}.json \
|
| 12 |
+
# --image_folder /share/shuyan/video_traindata/Bunny-v1_0-data/finetune/images \
|
| 13 |
+
# --video_folder /share/shuyan/video_traindata \
|
| 14 |
+
def rank0_print(*args):
|
| 15 |
+
if dist.is_initialized():
|
| 16 |
+
if dist.get_rank() == 0:
|
| 17 |
+
print(f"Rank {dist.get_rank()}: ", *args)
|
| 18 |
+
else:
|
| 19 |
+
print(*args)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
| 23 |
+
from transformers.image_transforms import (
|
| 24 |
+
convert_to_rgb,
|
| 25 |
+
normalize,
|
| 26 |
+
rescale,
|
| 27 |
+
resize,
|
| 28 |
+
to_channel_dimension_format,
|
| 29 |
+
)
|
| 30 |
+
from transformers.image_utils import (
|
| 31 |
+
ChannelDimension,
|
| 32 |
+
PILImageResampling,
|
| 33 |
+
to_numpy_array,
|
| 34 |
+
)
|
| 35 |
+
class SigLipImageProcessor:
|
| 36 |
+
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
| 37 |
+
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
| 38 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
| 39 |
+
|
| 40 |
+
self.image_mean = image_mean
|
| 41 |
+
self.image_std = image_std
|
| 42 |
+
self.size = size
|
| 43 |
+
self.resample = resample
|
| 44 |
+
self.rescale_factor = rescale_factor
|
| 45 |
+
self.data_format = data_format
|
| 46 |
+
self.crop_size = crop_size
|
| 47 |
+
|
| 48 |
+
def preprocess(self, images, return_tensors):
|
| 49 |
+
if isinstance(images, Image.Image):
|
| 50 |
+
images = [images]
|
| 51 |
+
else:
|
| 52 |
+
# to adapt video data
|
| 53 |
+
images = [to_numpy_array(image) for image in images]
|
| 54 |
+
assert isinstance(images, list)
|
| 55 |
+
|
| 56 |
+
transforms = [
|
| 57 |
+
convert_to_rgb,
|
| 58 |
+
to_numpy_array,
|
| 59 |
+
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
|
| 60 |
+
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
| 61 |
+
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
| 62 |
+
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
| 66 |
+
|
| 67 |
+
data = {"pixel_values": images}
|
| 68 |
+
|
| 69 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 70 |
+
|
| 71 |
+
class SigLipVisionTower(BaseVisionTower):
|
| 72 |
+
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
| 73 |
+
super(SigLipVisionTower, self).__init__(vision_tower_name, vision_tower_cfg, delay_load)
|
| 74 |
+
|
| 75 |
+
# model_path = "google/siglip-so400m-patch14-384"
|
| 76 |
+
# base_model_name, res, interp = model_path, 384, 576
|
| 77 |
+
# self.vision_tower_name = base_model_name
|
| 78 |
+
self.vision_tower_name, res, interp = vision_tower_name, 384, 576
|
| 79 |
+
self._image_size = res if res is not None else 512
|
| 80 |
+
self.unfreeze_mm_vision_tower = getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False)
|
| 81 |
+
|
| 82 |
+
if not delay_load:
|
| 83 |
+
rank0_print(f"Loading vision tower: {vision_tower_name}")
|
| 84 |
+
self.load_model()
|
| 85 |
+
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
| 86 |
+
# TODO: better detector is needed.
|
| 87 |
+
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
| 88 |
+
self.load_model()
|
| 89 |
+
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
| 90 |
+
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
| 91 |
+
self.load_model()
|
| 92 |
+
else:
|
| 93 |
+
self.cfg_only = self.config
|
| 94 |
+
|
| 95 |
+
def load_model(self, device_map=None):
|
| 96 |
+
self.vision_model = "siglip"
|
| 97 |
+
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
|
| 98 |
+
print(self.vision_tower_name)
|
| 99 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
| 100 |
+
|
| 101 |
+
# self.vision_tower = clip_model.visual.trunk
|
| 102 |
+
self.vision_tower.output_tokens = True
|
| 103 |
+
|
| 104 |
+
self._hidden_size = self.vision_tower.config.hidden_size
|
| 105 |
+
|
| 106 |
+
self.image_processor = SigLipImageProcessor()
|
| 107 |
+
|
| 108 |
+
del self.vision_tower.vision_model.encoder.layers[-1:]
|
| 109 |
+
self.vision_tower.vision_model.head = nn.Identity()
|
| 110 |
+
|
| 111 |
+
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
| 112 |
+
|
| 113 |
+
self.is_loaded = True
|
| 114 |
+
|
| 115 |
+
def _forward(self, images):
|
| 116 |
+
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
| 117 |
+
image_features = self.vision_tower.forward(
|
| 118 |
+
images.to(device=self.device, dtype=self.dtype),
|
| 119 |
+
output_hidden_states=True,
|
| 120 |
+
).hidden_states[-1]
|
| 121 |
+
return image_features
|
| 122 |
+
@property
|
| 123 |
+
def dummy_feature(self):
|
| 124 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
| 125 |
+
|
| 126 |
+
@property
|
| 127 |
+
def dtype(self):
|
| 128 |
+
for p in self.vision_tower.parameters():
|
| 129 |
+
return p.dtype
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def device(self):
|
| 133 |
+
for p in self.vision_tower.parameters():
|
| 134 |
+
return p.device
|
| 135 |
+
|
| 136 |
+
@property
|
| 137 |
+
def hidden_size(self):
|
| 138 |
+
return self.config.hidden_size
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def num_patches(self):
|
| 142 |
+
return (336 // 14) ** 2
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def num_patches_per_side(self):
|
| 146 |
+
#return self.config.image_size // self.config.patch_size
|
| 147 |
+
return 336//14
|
| 148 |
+
#return 27
|
| 149 |
+
# return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]
|
| 150 |
+
|
| 151 |
+
@property
|
| 152 |
+
def image_size(self):
|
| 153 |
+
return 384
|
| 154 |
+
#return self.config.image_size
|
utils.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import logging
|
| 3 |
+
import logging.handlers
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
import requests
|
| 9 |
+
|
| 10 |
+
from .constants import LOGDIR
|
| 11 |
+
|
| 12 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
| 13 |
+
moderation_msg = "I am sorry. Your input may violate our content moderation guidelines. Please avoid using harmful or offensive content."
|
| 14 |
+
|
| 15 |
+
handler = None
|
| 16 |
+
|
| 17 |
+
import torch.distributed as dist
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
import av
|
| 21 |
+
except ImportError:
|
| 22 |
+
print("Please install pyav to use video processing functions.")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def process_video_with_pyav(video_file, data_args):
|
| 26 |
+
container = av.open(video_file)
|
| 27 |
+
stream = container.streams.video[0]
|
| 28 |
+
total_frame_num = stream.frames
|
| 29 |
+
avg_fps = round(stream.average_rate / data_args.video_fps)
|
| 30 |
+
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
|
| 31 |
+
if data_args.frames_upbound > 0:
|
| 32 |
+
if len(frame_idx) > data_args.frames_upbound:
|
| 33 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
|
| 34 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 35 |
+
|
| 36 |
+
video_frames = []
|
| 37 |
+
for index, frame in enumerate(container.decode(video=0)):
|
| 38 |
+
if index in frame_idx:
|
| 39 |
+
video_frames.append(frame.to_rgb().to_ndarray())
|
| 40 |
+
if len(video_frames) == len(frame_idx): # Stop decoding once we have all needed frames
|
| 41 |
+
break
|
| 42 |
+
|
| 43 |
+
video = np.stack(video_frames)
|
| 44 |
+
return video
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def rank0_print(*args):
|
| 48 |
+
if dist.is_initialized():
|
| 49 |
+
if dist.get_rank() == 0:
|
| 50 |
+
print(f"Rank {dist.get_rank()}: ", *args)
|
| 51 |
+
else:
|
| 52 |
+
print(*args)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def build_logger(logger_name, logger_filename):
|
| 56 |
+
global handler
|
| 57 |
+
|
| 58 |
+
formatter = logging.Formatter(
|
| 59 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 60 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Set the format of root handlers
|
| 64 |
+
if not logging.getLogger().handlers:
|
| 65 |
+
logging.basicConfig(level=logging.INFO)
|
| 66 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
| 67 |
+
|
| 68 |
+
# Redirect stdout and stderr to loggers
|
| 69 |
+
stdout_logger = logging.getLogger("stdout")
|
| 70 |
+
stdout_logger.setLevel(logging.INFO)
|
| 71 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
| 72 |
+
sys.stdout = sl
|
| 73 |
+
|
| 74 |
+
stderr_logger = logging.getLogger("stderr")
|
| 75 |
+
stderr_logger.setLevel(logging.ERROR)
|
| 76 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
| 77 |
+
sys.stderr = sl
|
| 78 |
+
|
| 79 |
+
# Get logger
|
| 80 |
+
logger = logging.getLogger(logger_name)
|
| 81 |
+
logger.setLevel(logging.INFO)
|
| 82 |
+
|
| 83 |
+
# Add a file handler for all loggers
|
| 84 |
+
if handler is None:
|
| 85 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
| 86 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
| 87 |
+
handler = logging.handlers.TimedRotatingFileHandler(filename, when="D", utc=True)
|
| 88 |
+
handler.setFormatter(formatter)
|
| 89 |
+
|
| 90 |
+
for name, item in logging.root.manager.loggerDict.items():
|
| 91 |
+
if isinstance(item, logging.Logger):
|
| 92 |
+
item.addHandler(handler)
|
| 93 |
+
|
| 94 |
+
return logger
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class StreamToLogger(object):
|
| 98 |
+
"""
|
| 99 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
def __init__(self, logger, log_level=logging.INFO):
|
| 103 |
+
self.terminal = sys.stdout
|
| 104 |
+
self.logger = logger
|
| 105 |
+
self.log_level = log_level
|
| 106 |
+
self.linebuf = ""
|
| 107 |
+
|
| 108 |
+
def __getattr__(self, attr):
|
| 109 |
+
return getattr(self.terminal, attr)
|
| 110 |
+
|
| 111 |
+
def write(self, buf):
|
| 112 |
+
temp_linebuf = self.linebuf + buf
|
| 113 |
+
self.linebuf = ""
|
| 114 |
+
for line in temp_linebuf.splitlines(True):
|
| 115 |
+
# From the io.TextIOWrapper docs:
|
| 116 |
+
# On output, if newline is None, any '\n' characters written
|
| 117 |
+
# are translated to the system default line separator.
|
| 118 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
| 119 |
+
# translates them so this is still cross platform.
|
| 120 |
+
if line[-1] == "\n":
|
| 121 |
+
self.logger.log(self.log_level, line.rstrip())
|
| 122 |
+
else:
|
| 123 |
+
self.linebuf += line
|
| 124 |
+
|
| 125 |
+
def flush(self):
|
| 126 |
+
if self.linebuf != "":
|
| 127 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
| 128 |
+
self.linebuf = ""
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def disable_torch_init():
|
| 132 |
+
"""
|
| 133 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
| 134 |
+
"""
|
| 135 |
+
import torch
|
| 136 |
+
|
| 137 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 138 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def violates_moderation(text):
|
| 142 |
+
"""
|
| 143 |
+
Check whether the text violates OpenAI moderation API.
|
| 144 |
+
"""
|
| 145 |
+
url = "https://api.openai.com/v1/moderations"
|
| 146 |
+
headers = {"Content-Type": "application/json", "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
| 147 |
+
text = text.replace("\n", "")
|
| 148 |
+
data = "{" + '"input": ' + f'"{text}"' + "}"
|
| 149 |
+
data = data.encode("utf-8")
|
| 150 |
+
try:
|
| 151 |
+
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
| 152 |
+
flagged = ret.json()["results"][0]["flagged"]
|
| 153 |
+
except requests.exceptions.RequestException as e:
|
| 154 |
+
print(f"######################### Moderation Error: {e} #########################")
|
| 155 |
+
flagged = False
|
| 156 |
+
except KeyError as e:
|
| 157 |
+
print(f"######################### Moderation Error: {e} #########################")
|
| 158 |
+
flagged = False
|
| 159 |
+
|
| 160 |
+
return flagged
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def pretty_print_semaphore(semaphore):
|
| 164 |
+
if semaphore is None:
|
| 165 |
+
return "None"
|
| 166 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
utils_encoder.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2, os
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def count_params(model, verbose=False):
|
| 9 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 10 |
+
if verbose:
|
| 11 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
| 12 |
+
return total_params
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def check_istarget(name, para_list):
|
| 16 |
+
"""
|
| 17 |
+
name: full name of source para
|
| 18 |
+
para_list: partial name of target para
|
| 19 |
+
"""
|
| 20 |
+
istarget = False
|
| 21 |
+
for para in para_list:
|
| 22 |
+
if para in name:
|
| 23 |
+
return True
|
| 24 |
+
return istarget
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def instantiate_from_config(config):
|
| 28 |
+
if not "target" in config:
|
| 29 |
+
if config == "__is_first_stage__":
|
| 30 |
+
return None
|
| 31 |
+
elif config == "__is_unconditional__":
|
| 32 |
+
return None
|
| 33 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 34 |
+
|
| 35 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_obj_from_str(string, reload=False):
|
| 39 |
+
module, cls = string.rsplit(".", 1)
|
| 40 |
+
if reload:
|
| 41 |
+
module_imp = importlib.import_module(module)
|
| 42 |
+
importlib.reload(module_imp)
|
| 43 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def load_npz_from_dir(data_dir):
|
| 47 |
+
data = [
|
| 48 |
+
np.load(os.path.join(data_dir, data_name))["arr_0"]
|
| 49 |
+
for data_name in os.listdir(data_dir)
|
| 50 |
+
]
|
| 51 |
+
data = np.concatenate(data, axis=0)
|
| 52 |
+
return data
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_npz_from_paths(data_paths):
|
| 56 |
+
data = [np.load(data_path)["arr_0"] for data_path in data_paths]
|
| 57 |
+
data = np.concatenate(data, axis=0)
|
| 58 |
+
return data
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
|
| 62 |
+
h, w = image.shape[:2]
|
| 63 |
+
if resize_short_edge is not None:
|
| 64 |
+
k = resize_short_edge / min(h, w)
|
| 65 |
+
else:
|
| 66 |
+
k = max_resolution / (h * w)
|
| 67 |
+
k = k**0.5
|
| 68 |
+
h = int(np.round(h * k / 64)) * 64
|
| 69 |
+
w = int(np.round(w * k / 64)) * 64
|
| 70 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
| 71 |
+
return image
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def setup_dist(args):
|
| 75 |
+
if dist.is_initialized():
|
| 76 |
+
return
|
| 77 |
+
torch.cuda.set_device(args.local_rank)
|
| 78 |
+
torch.distributed.init_process_group("nccl", init_method="env://")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# adopted from
|
| 82 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
| 83 |
+
# and
|
| 84 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 85 |
+
# and
|
| 86 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
| 87 |
+
#
|
| 88 |
+
# thanks!
|
| 89 |
+
|
| 90 |
+
import torch.nn as nn
|
| 91 |
+
import math
|
| 92 |
+
from inspect import isfunction
|
| 93 |
+
import torch
|
| 94 |
+
from torch import nn
|
| 95 |
+
import torch.distributed as dist
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def gather_data(data, return_np=True):
|
| 99 |
+
"""gather data from multiple processes to one list"""
|
| 100 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
| 101 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
| 102 |
+
if return_np:
|
| 103 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
| 104 |
+
return data_list
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def autocast(f):
|
| 108 |
+
def do_autocast(*args, **kwargs):
|
| 109 |
+
with torch.cuda.amp.autocast(
|
| 110 |
+
enabled=True,
|
| 111 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
| 112 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
| 113 |
+
):
|
| 114 |
+
return f(*args, **kwargs)
|
| 115 |
+
|
| 116 |
+
return do_autocast
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def extract_into_tensor(a, t, x_shape):
|
| 120 |
+
b, *_ = t.shape
|
| 121 |
+
out = a.gather(-1, t)
|
| 122 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def noise_like(shape, device, repeat=False):
|
| 126 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
| 127 |
+
shape[0], *((1,) * (len(shape) - 1))
|
| 128 |
+
)
|
| 129 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 130 |
+
return repeat_noise() if repeat else noise()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def default(val, d):
|
| 134 |
+
if exists(val):
|
| 135 |
+
return val
|
| 136 |
+
return d() if isfunction(d) else d
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def exists(val):
|
| 140 |
+
return val is not None
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def identity(*args, **kwargs):
|
| 144 |
+
return nn.Identity()
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def uniq(arr):
|
| 148 |
+
return {el: True for el in arr}.keys()
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def mean_flat(tensor):
|
| 152 |
+
"""
|
| 153 |
+
Take the mean over all non-batch dimensions.
|
| 154 |
+
"""
|
| 155 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def ismap(x):
|
| 159 |
+
if not isinstance(x, torch.Tensor):
|
| 160 |
+
return False
|
| 161 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def isimage(x):
|
| 165 |
+
if not isinstance(x, torch.Tensor):
|
| 166 |
+
return False
|
| 167 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def max_neg_value(t):
|
| 171 |
+
return -torch.finfo(t.dtype).max
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def shape_to_str(x):
|
| 175 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
| 176 |
+
return shape_str
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def init_(tensor):
|
| 180 |
+
dim = tensor.shape[-1]
|
| 181 |
+
std = 1 / math.sqrt(dim)
|
| 182 |
+
tensor.uniform_(-std, std)
|
| 183 |
+
return tensor
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# ckpt = torch.utils.checkpoint.checkpoint
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# def checkpoint(func, inputs, params, flag):
|
| 190 |
+
# """
|
| 191 |
+
# Evaluate a function without caching intermediate activations, allowing for
|
| 192 |
+
# reduced memory at the expense of extra compute in the backward pass.
|
| 193 |
+
# :param func: the function to evaluate.
|
| 194 |
+
# :param inputs: the argument sequence to pass to `func`.
|
| 195 |
+
# :param params: a sequence of parameters `func` depends on but does not
|
| 196 |
+
# explicitly take as arguments.
|
| 197 |
+
# :param flag: if False, disable gradient checkpointing.
|
| 198 |
+
# """
|
| 199 |
+
# if flag:
|
| 200 |
+
# return ckpt(func, *inputs)
|
| 201 |
+
# else:
|
| 202 |
+
# return func(*inputs)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def disabled_train(self, mode=True):
|
| 206 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 207 |
+
does not change anymore."""
|
| 208 |
+
return self
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def zero_module(module):
|
| 212 |
+
"""
|
| 213 |
+
Zero out the parameters of a module and return it.
|
| 214 |
+
"""
|
| 215 |
+
for p in module.parameters():
|
| 216 |
+
p.detach().zero_()
|
| 217 |
+
return module
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def scale_module(module, scale):
|
| 221 |
+
"""
|
| 222 |
+
Scale the parameters of a module and return it.
|
| 223 |
+
"""
|
| 224 |
+
for p in module.parameters():
|
| 225 |
+
p.detach().mul_(scale)
|
| 226 |
+
return module
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def conv_nd(dims, *args, **kwargs):
|
| 230 |
+
"""
|
| 231 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 232 |
+
"""
|
| 233 |
+
if dims == 1:
|
| 234 |
+
return nn.Conv1d(*args, **kwargs)
|
| 235 |
+
elif dims == 2:
|
| 236 |
+
return nn.Conv2d(*args, **kwargs)
|
| 237 |
+
elif dims == 3:
|
| 238 |
+
return nn.Conv3d(*args, **kwargs)
|
| 239 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def linear(*args, **kwargs):
|
| 243 |
+
"""
|
| 244 |
+
Create a linear module.
|
| 245 |
+
"""
|
| 246 |
+
return nn.Linear(*args, **kwargs)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 250 |
+
"""
|
| 251 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 252 |
+
"""
|
| 253 |
+
if dims == 1:
|
| 254 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 255 |
+
elif dims == 2:
|
| 256 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 257 |
+
elif dims == 3:
|
| 258 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 259 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def nonlinearity(type="silu"):
|
| 263 |
+
if type == "silu":
|
| 264 |
+
return nn.SiLU()
|
| 265 |
+
elif type == "leaky_relu":
|
| 266 |
+
return nn.LeakyReLU()
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class GroupNormSpecific(nn.GroupNorm):
|
| 270 |
+
def forward(self, x):
|
| 271 |
+
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
| 272 |
+
return super().forward(x).type(x.dtype)
|
| 273 |
+
else:
|
| 274 |
+
return super().forward(x.float()).type(x.dtype)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def normalization(channels, num_groups=32):
|
| 278 |
+
"""
|
| 279 |
+
Make a standard normalization layer.
|
| 280 |
+
:param channels: number of input channels.
|
| 281 |
+
:return: an nn.Module for normalization.
|
| 282 |
+
"""
|
| 283 |
+
return GroupNormSpecific(num_groups, channels)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
class HybridConditioner(nn.Module):
|
| 287 |
+
|
| 288 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 289 |
+
super().__init__()
|
| 290 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 291 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 292 |
+
|
| 293 |
+
def forward(self, c_concat, c_crossattn):
|
| 294 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 295 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 296 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|