--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - sql license: apache-2.0 language: - en datasets: - b-mc2/sql-create-context --- ## **Model Card for Llama3.2-3B-SQL-Expert-1Epoch** ### **Model Details** #### **Model Description** Llama3.2-3B-SQL-Expert-1Epoch is a fine-tuned version of Meta’s Llama-3.1-3B, specifically optimized for generating SQL queries from natural language input. The model has been trained using **Unsloth** for efficient fine-tuning and inference. - **Developed by:** Azzedine (GitHub: Azzedde) - **Funded by [optional]:** N/A - **Shared by [optional]:** Azzedde - **Model Type:** Large Language Model (LLM) optimized for SQL query generation - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Finetuned from model [optional]:** Meta-Llama-3.1-3B-Instruct --- ### **Model Sources** - **Repository:** [Hugging Face](https://huggingface.co/Azzedde/llama3.2-3b-sql-expert-1-epoch) - **Paper [optional]:** N/A - **Demo [optional]:** N/A --- ### **Uses** #### **Direct Use** This model is designed for generating **SQL queries** based on natural language inputs and is useful for: - **Database management and administration** - **Automated query generation** - **Data analytics pipelines** - **SQL education and training** - **Business intelligence applications** #### **Downstream Use [optional]** - Embedding into LLM-based database assistants - Automating SQL-based analytics - Assisting developers in writing optimized queries #### **Out-of-Scope Use** - General NLP tasks unrelated to SQL query generation - Applications requiring strong factual accuracy outside SQL --- ### **Bias, Risks, and Limitations** - **Incorrect or suboptimal queries:** The model may generate queries that are syntactically correct but do not yield the intended results. - **Lack of query optimization:** The generated queries are not always optimized for performance; users should validate execution plans. - **English-only support:** The model primarily supports English-language inputs. - **Limited schema understanding:** The model does not validate database structures and may assume incorrect relationships between tables. ### **Recommendations** Users should: - **Always validate generated SQL queries** before executing them. - **Use the model as an assistant**, not a replacement for SQL expertise. - **Fine-tune the model further** for domain-specific databases. --- ### **How to Get Started with the Model** Use the following code to load and use the model: ```python from unsloth import FastLanguageModel from transformers import AutoTokenizer # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Azzedde/llama3.2-3b-sql-expert-1-epoch") model = FastLanguageModel.from_pretrained("Azzedde/llama3.2-3b-sql-expert-1-epoch") # Example inference sql_prompt = """Below is a SQL database schema and a question. Generate an SQL query to answer the question. ### Schema: {schema} ### Question: {question} ### SQL Query: """ input_text = sql_prompt.format( schema="CREATE TABLE employees (id INT PRIMARY KEY, name VARCHAR, salary DECIMAL, department_id INT);", question="Find the average salary per department." ) # Tokenize and generate query inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True) print(tokenizer.decode(outputs[0])) ``` --- ### **Training Details** #### **Training Data** - The model was fine-tuned on a **structured SQL dataset**, including a mix of **publicly available SQL benchmarks** and **synthetically generated SQL queries**. #### **Training Procedure** - **Preprocessing:** Tokenized using standard **SQL syntax formatting** - **Training Hyperparameters:** - `batch_size = 4` - `gradient_accumulation_steps = 8` - `num_train_epochs = 1` - `learning_rate = 2e-4` - `fp16 = True` --- ### **Evaluation** #### **Testing Data** - The model was evaluated on a separate test set of **SQL queries** derived from real-world **database schemas**. #### **Evaluation Metrics** - **Exact Match Accuracy**: Percentage of queries that exactly match ground-truth SQL - **Execution Success Rate**: Percentage of generated queries that execute without errors #### **Results** - **High accuracy** for common SQL queries - **Some errors** in complex multi-table joins and nested queries --- ### **Environmental Impact** - **Hardware Type:** Tesla T4 (Google Colab) - **Training Duration:** ~1.5 hours - **Compute Region:** N/A - **Estimated Carbon Emissions:** Minimal --- ### **Technical Specifications** #### **Model Architecture and Objective** - Based on **Llama-3.1 3B**, fine-tuned with **LoRA** for SQL generation. #### **Compute Infrastructure** - **Fine-tuned using Unsloth** for efficient training and inference. #### **Hardware** - **GPU:** Tesla T4 - **Max Reserved Memory:** ~6.5 GB #### **Software** - **Libraries Used:** `unsloth`, `transformers`, `TRL`, `datasets` --- ### **Citation [optional]** #### **BibTeX:** ```bibtex @article{llama3.2-3B-SQL-Expert, author = {Azzedde}, title = {Llama3.2-3B-SQL-Expert: An SQL Query Generation Model}, year = {2025}, url = {https://huggingface.co/Azzedde/llama3.2-3b-sql-expert-1-epoch} } ``` #### **APA:** Azzedde. (2025). *Llama3.2-3B-SQL-Expert: An SQL Query Generation Model.* Retrieved from Hugging Face --- ### **More Information** For questions, reach out via **Hugging Face discussions** or **GitHub issues**. --- ### **Model Card Authors** - **Azzedde** (GitHub: [Azzedde](https://github.com/Azzedde)) --- ### **Model Card Contact** - **Contact:** [Hugging Face Profile](https://huggingface.co/Azzedde)