--- library_name: transformers tags: - unsloth - trl - sft license: mit datasets: - neo4j/text2cypher-2024v1 language: - en base_model: - unsloth/Llama-3.1-8B-Instruct pipeline_tag: text-generation --- ## Model Card for Llama3.1-8B-Cypher ### Model Details **Model Description** This is the model card for **Llama3.1-8B-Cypher**, a fine-tuned version of Meta’s Llama-3.1-8B, optimized for generating **Cypher queries** from natural language input. The model has been trained using **Unsloth** for efficient fine-tuning and inference. **Developed by**: Azzedine (GitHub: Azzedde) **Funded by [optional]**: N/A **Shared by [optional]**: Azzedde **Model Type**: Large Language Model (LLM) optimized for Cypher query generation **Language(s) (NLP)**: English **License**: Apache 2.0 **Finetuned from model [optional]**: Meta-Llama-3.1-8B-Instruct ### Model Sources **Repository**: [Hugging Face](https://huggingface.co/Azzedde/llama3.1-8b-text2cypher) **Paper [optional]**: N/A **Demo [optional]**: N/A ### Uses #### Direct Use This model is designed for generating **Cypher queries** for **Neo4j databases** based on natural language inputs. It can be used in: - Database administration - Knowledge graph construction - Query automation for structured data retrieval #### Downstream Use [optional] - Integrating into **LLM-based database assistants** - Automating **graph database interactions** in enterprise applications - Enhancing **semantic search and recommendation systems** #### Out-of-Scope Use - General NLP tasks unrelated to graph databases - Applications requiring strong factual accuracy outside Cypher query generation ### Bias, Risks, and Limitations - The model may **generate incorrect or suboptimal Cypher queries**, especially for **complex database schemas**. - The model has not been trained to **validate or optimize queries**, so users should manually **verify generated queries**. - Limited to **English-language inputs** and **Neo4j graph database use cases**. ### Recommendations Users should be aware of: - The importance of **validating model-generated queries** before execution. - The **potential for biases** in database schema interpretation. - The need for **fine-tuning on domain-specific datasets** for best performance. ### How to Get Started with the Model Use the following code to load and use the model: ```python from unsloth import FastLanguageModel from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Azzedde/llama3.1-8b-text2cypher") model = FastLanguageModel.from_pretrained("Azzedde/llama3.1-8b-text2cypher") # Example inference cypher_prompt = """Below is a database Neo4j schema and a question related to that database. Write a Cypher query to answer the question. ### Schema: {schema} ### Question: {question} ### Cypher: """ input_text = cypher_prompt.format(schema="", question="Find all users with more than 5 transactions") inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True) print(tokenizer.decode(outputs[0])) ``` ### Training Details **Training Data**: The model was fine-tuned on the **Neo4j Text2Cypher dataset (2024v1)**. **Training Procedure**: - **Preprocessing**: Tokenized using the **Alpaca format**. - **Training Hyperparameters**: - `batch_size=2` - `gradient_accumulation_steps=4` - `num_train_epochs=3` - `learning_rate=2e-4` - `fp16=True` ### Evaluation #### Testing Data - Used the **Neo4j Text2Cypher 2024v1 test split**. #### Factors - Model performance was measured on **accuracy of Cypher query generation**. #### Metrics - **Exact Match** with ground truth Cypher queries. - **Execution Success Rate** on a test Neo4j instance. #### Results - **High accuracy** for standard database queries. - **Some errors in complex queries requiring multi-hop reasoning**. ### Environmental Impact **Hardware Type**: Tesla T4 (Google Colab) **Hours Used**: ~7.71 minutes **Cloud Provider**: Google Colab **Compute Region**: N/A **Carbon Emitted**: Estimated using ML Impact calculator ### Technical Specifications #### Model Architecture and Objective - Based on **Llama-3.1 8B** with **LoRA fine-tuning**. #### Compute Infrastructure - Fine-tuned using **Unsloth** for efficient training and inference. #### Hardware - **GPU**: Tesla T4 - **Max Reserved Memory**: ~7.922 GB #### Software - **Libraries Used**: `unsloth`, `transformers`, `TRL`, `datasets` ### Citation [optional] **BibTeX:** ``` @article{llama3.1-8b-cypher, author = {Azzedde}, title = {Llama3.1-8B-Cypher: A Cypher Query Generation Model}, year = {2025}, url = {https://huggingface.co/Azzedde/llama3.1-8b-text2cypher} } ``` **APA:** Azzedde. (2025). *Llama3.1-8B-Cypher: A Cypher Query Generation Model*. Retrieved from [Hugging Face](https://huggingface.co/Azzedde/llama3.1-8b-text2cypher) ### More Information For questions, reach out via **Hugging Face discussions** or GitHub issues. ### Model Card Authors - **Azzedde** (GitHub: Azzedde) ### Model Card Contact **Contact**: [Hugging Face Profile](https://huggingface.co/Azzedde)