Update README.md
Browse files
README.md
CHANGED
@@ -4,199 +4,156 @@ tags:
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Model Card for Model ID
|
10 |
|
11 |
-
|
12 |
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
###
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
-
|
31 |
-
### Model Sources [optional]
|
32 |
-
|
33 |
-
<!-- Provide the basic links for the model. -->
|
34 |
-
|
35 |
-
- **Repository:** [More Information Needed]
|
36 |
-
- **Paper [optional]:** [More Information Needed]
|
37 |
-
- **Demo [optional]:** [More Information Needed]
|
38 |
-
|
39 |
-
## Uses
|
40 |
-
|
41 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
42 |
-
|
43 |
-
### Direct Use
|
44 |
-
|
45 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
46 |
-
|
47 |
-
[More Information Needed]
|
48 |
-
|
49 |
-
### Downstream Use [optional]
|
50 |
-
|
51 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
-
|
55 |
-
### Out-of-Scope Use
|
56 |
-
|
57 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
-
|
61 |
-
## Bias, Risks, and Limitations
|
62 |
-
|
63 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
64 |
-
|
65 |
-
[More Information Needed]
|
66 |
|
67 |
### Recommendations
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
#### Testing Data
|
113 |
-
|
114 |
-
<!-- This should link to a Dataset Card if possible. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
|
118 |
#### Factors
|
119 |
-
|
120 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
|
124 |
#### Metrics
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
### Results
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
#### Summary
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
## Model Examination [optional]
|
139 |
-
|
140 |
-
<!-- Relevant interpretability work for the model goes here -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
## Environmental Impact
|
145 |
-
|
146 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
147 |
-
|
148 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
149 |
-
|
150 |
-
- **Hardware Type:** [More Information Needed]
|
151 |
-
- **Hours used:** [More Information Needed]
|
152 |
-
- **Cloud Provider:** [More Information Needed]
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
###
|
|
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
### Compute Infrastructure
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
|
166 |
#### Hardware
|
167 |
-
|
168 |
-
|
169 |
|
170 |
#### Software
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
**BibTeX:**
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
[
|
199 |
-
|
200 |
-
## Model Card Contact
|
201 |
-
|
202 |
-
[More Information Needed]
|
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- neo4j/text2cypher-2024v1
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
base_model:
|
13 |
+
- unsloth/Llama-3.1-8B-Instruct
|
14 |
+
pipeline_tag: text-generation
|
15 |
---
|
16 |
|
|
|
17 |
|
18 |
+
## Model Card for Llama3.1-8B-Cypher
|
19 |
|
20 |
+
### Model Details
|
21 |
+
**Model Description**
|
22 |
+
This is the model card for **Llama3.1-8B-Cypher**, a fine-tuned version of Meta’s Llama-3.1-8B, optimized for generating **Cypher queries** from natural language input. The model has been trained using **Unsloth** for efficient fine-tuning and inference.
|
23 |
|
24 |
+
**Developed by**: Azzedine (GitHub: Azzedde)
|
25 |
+
**Funded by [optional]**: N/A
|
26 |
+
**Shared by [optional]**: Azzedde
|
27 |
+
**Model Type**: Large Language Model (LLM) optimized for Cypher query generation
|
28 |
+
**Language(s) (NLP)**: English
|
29 |
+
**License**: Apache 2.0
|
30 |
+
**Finetuned from model [optional]**: Meta-Llama-3.1-8B-Instruct
|
31 |
|
32 |
+
### Model Sources
|
33 |
+
**Repository**: [Hugging Face](https://huggingface.co/Azzedde/llama3.1-8b-text2cypher)
|
34 |
+
**Paper [optional]**: N/A
|
35 |
+
**Demo [optional]**: N/A
|
36 |
|
37 |
+
### Uses
|
38 |
+
#### Direct Use
|
39 |
+
This model is designed for generating **Cypher queries** for **Neo4j databases** based on natural language inputs. It can be used in:
|
40 |
+
- Database administration
|
41 |
+
- Knowledge graph construction
|
42 |
+
- Query automation for structured data retrieval
|
43 |
|
44 |
+
#### Downstream Use [optional]
|
45 |
+
- Integrating into **LLM-based database assistants**
|
46 |
+
- Automating **graph database interactions** in enterprise applications
|
47 |
+
- Enhancing **semantic search and recommendation systems**
|
48 |
|
49 |
+
#### Out-of-Scope Use
|
50 |
+
- General NLP tasks unrelated to graph databases
|
51 |
+
- Applications requiring strong factual accuracy outside Cypher query generation
|
52 |
|
53 |
+
### Bias, Risks, and Limitations
|
54 |
+
- The model may **generate incorrect or suboptimal Cypher queries**, especially for **complex database schemas**.
|
55 |
+
- The model has not been trained to **validate or optimize queries**, so users should manually **verify generated queries**.
|
56 |
+
- Limited to **English-language inputs** and **Neo4j graph database use cases**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
### Recommendations
|
59 |
+
Users should be aware of:
|
60 |
+
- The importance of **validating model-generated queries** before execution.
|
61 |
+
- The **potential for biases** in database schema interpretation.
|
62 |
+
- The need for **fine-tuning on domain-specific datasets** for best performance.
|
63 |
+
|
64 |
+
### How to Get Started with the Model
|
65 |
+
Use the following code to load and use the model:
|
66 |
+
|
67 |
+
```python
|
68 |
+
from unsloth import FastLanguageModel
|
69 |
+
from transformers import AutoTokenizer
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("Azzedde/llama3.1-8b-text2cypher")
|
72 |
+
model = FastLanguageModel.from_pretrained("Azzedde/llama3.1-8b-text2cypher")
|
73 |
+
|
74 |
+
# Example inference
|
75 |
+
cypher_prompt = """Below is a database Neo4j schema and a question related to that database. Write a Cypher query to answer the question.
|
76 |
+
|
77 |
+
### Schema:
|
78 |
+
{schema}
|
79 |
+
|
80 |
+
### Question:
|
81 |
+
{question}
|
82 |
+
|
83 |
+
### Cypher:
|
84 |
+
"""
|
85 |
+
input_text = cypher_prompt.format(schema="<Your Schema>", question="Find all users with more than 5 transactions")
|
86 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
87 |
+
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
|
88 |
+
print(tokenizer.decode(outputs[0]))
|
89 |
+
```
|
90 |
+
|
91 |
+
### Training Details
|
92 |
+
**Training Data**: The model was fine-tuned on the **Neo4j Text2Cypher dataset (2024v1)**.
|
93 |
+
**Training Procedure**:
|
94 |
+
- **Preprocessing**: Tokenized using the **Alpaca format**.
|
95 |
+
- **Training Hyperparameters**:
|
96 |
+
- `batch_size=2`
|
97 |
+
- `gradient_accumulation_steps=4`
|
98 |
+
- `num_train_epochs=3`
|
99 |
+
- `learning_rate=2e-4`
|
100 |
+
- `fp16=True`
|
101 |
+
|
102 |
+
### Evaluation
|
103 |
#### Testing Data
|
104 |
+
- Used the **Neo4j Text2Cypher 2024v1 test split**.
|
|
|
|
|
|
|
105 |
|
106 |
#### Factors
|
107 |
+
- Model performance was measured on **accuracy of Cypher query generation**.
|
|
|
|
|
|
|
108 |
|
109 |
#### Metrics
|
110 |
+
- **Exact Match** with ground truth Cypher queries.
|
111 |
+
- **Execution Success Rate** on a test Neo4j instance.
|
112 |
|
113 |
+
#### Results
|
114 |
+
- **High accuracy** for standard database queries.
|
115 |
+
- **Some errors in complex queries requiring multi-hop reasoning**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
### Environmental Impact
|
118 |
+
**Hardware Type**: Tesla T4 (Google Colab)
|
119 |
+
**Hours Used**: ~7.71 minutes
|
120 |
+
**Cloud Provider**: Google Colab
|
121 |
+
**Compute Region**: N/A
|
122 |
+
**Carbon Emitted**: Estimated using ML Impact calculator
|
123 |
|
124 |
+
### Technical Specifications
|
125 |
+
#### Model Architecture and Objective
|
126 |
+
- Based on **Llama-3.1 8B** with **LoRA fine-tuning**.
|
127 |
|
128 |
+
#### Compute Infrastructure
|
129 |
+
- Fine-tuned using **Unsloth** for efficient training and inference.
|
|
|
|
|
|
|
130 |
|
131 |
#### Hardware
|
132 |
+
- **GPU**: Tesla T4
|
133 |
+
- **Max Reserved Memory**: ~7.922 GB
|
134 |
|
135 |
#### Software
|
136 |
+
- **Libraries Used**: `unsloth`, `transformers`, `TRL`, `datasets`
|
137 |
|
138 |
+
### Citation [optional]
|
|
|
|
|
|
|
|
|
|
|
139 |
**BibTeX:**
|
140 |
+
```
|
141 |
+
@article{llama3.1-8b-cypher,
|
142 |
+
author = {Azzedde},
|
143 |
+
title = {Llama3.1-8B-Cypher: A Cypher Query Generation Model},
|
144 |
+
year = {2025},
|
145 |
+
url = {https://huggingface.co/Azzedde/llama3.1-8b-text2cypher}
|
146 |
+
}
|
147 |
+
```
|
148 |
+
|
149 |
+
**APA:**
|
150 |
+
Azzedde. (2025). *Llama3.1-8B-Cypher: A Cypher Query Generation Model*. Retrieved from [Hugging Face](https://huggingface.co/Azzedde/llama3.1-8b-text2cypher)
|
151 |
+
|
152 |
+
### More Information
|
153 |
+
For questions, reach out via **Hugging Face discussions** or GitHub issues.
|
154 |
+
|
155 |
+
### Model Card Authors
|
156 |
+
- **Azzedde** (GitHub: Azzedde)
|
157 |
+
|
158 |
+
### Model Card Contact
|
159 |
+
**Contact**: [Hugging Face Profile](https://huggingface.co/Azzedde)
|
|
|
|
|
|
|
|