Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- gguf
|
5 |
+
- llama.cpp
|
6 |
+
- ollama
|
7 |
+
- reasoning-llm
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- custom/reasoning-dataset-2024v1
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
base_model:
|
14 |
+
- meta-llama/meta-Llama-3.1-8B-Instruct
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
---
|
17 |
+
|
18 |
+
## Model Card for Azzedde/llama3.1-8b-reasoning-grpo-gguf
|
19 |
+
|
20 |
+
### Model Details
|
21 |
+
**Model Description**
|
22 |
+
This is the GGUF version of **llama3.1-8b-reasoning-grpo**, optimized for complex reasoning and logical inference. The model was converted to **GGUF format** using the `convert-hf-to-gguf.py` script from **llama.cpp**, making it compatible with optimized inference frameworks like **Ollama**.
|
23 |
+
|
24 |
+
**Developed by**: Azzedine (GitHub: Azzedde)
|
25 |
+
**Model Type**: Large Language Model (LLM) optimized for reasoning tasks
|
26 |
+
**Language(s) (NLP)**: English
|
27 |
+
**License**: MIT
|
28 |
+
**Converted from**: [Azzedde/llama3.1-8b-reasoning-grpo](https://huggingface.co/Azzedde/llama3.1-8b-reasoning-grpo)
|
29 |
+
|
30 |
+
### Model Sources
|
31 |
+
**Repository**: [Hugging Face](https://huggingface.co/Azzedde/llama3.1-8b-reasoning-grpo-gguf)
|
32 |
+
**Conversion Script**: `convert-hf-to-gguf.py` (llama.cpp)
|
33 |
+
|
34 |
+
### Uses
|
35 |
+
#### Direct Use
|
36 |
+
This model is designed for **complex reasoning** and **logical inference**, particularly in:
|
37 |
+
- Analytical problem-solving
|
38 |
+
- Multi-step deduction
|
39 |
+
- Automated reasoning systems
|
40 |
+
- Advanced question-answering tasks
|
41 |
+
|
42 |
+
#### Downstream Use
|
43 |
+
- AI-driven **decision support systems**
|
44 |
+
- Multi-step **reasoning chains** in LLM applications
|
45 |
+
- **LLM-based tutoring systems**
|
46 |
+
|
47 |
+
### How to Use
|
48 |
+
#### Using with `llama.cpp`
|
49 |
+
Load the GGUF model using `llama.cpp`:
|
50 |
+
|
51 |
+
```bash
|
52 |
+
# Download the model
|
53 |
+
wget https://huggingface.co/Azzedde/llama3.1-8b-reasoning-grpo-gguf/resolve/main/model.gguf
|
54 |
+
|
55 |
+
# Run with llama.cpp
|
56 |
+
./main -m model.gguf -p "Solve the following logical problem: If all A are B, and some B are C, does it follow that some A are C?"
|
57 |
+
```
|
58 |
+
|
59 |
+
#### Using with **Ollama**
|
60 |
+
You can use this model directly with **Ollama**, which provides a seamless way to interact with GGUF models:
|
61 |
+
|
62 |
+
```bash
|
63 |
+
ollama run hf.co/Azzedde/llama3.1-8b-reasoning-grpo-gguf
|
64 |
+
```
|
65 |
+
|
66 |
+
For custom quantization:
|
67 |
+
```bash
|
68 |
+
ollama run hf.co/Azzedde/llama3.1-8b-reasoning-grpo-gguf:Q8_0
|
69 |
+
```
|
70 |
+
|
71 |
+
For more details on Ollama usage, refer to [Ollama Docs](https://github.com/ollama/ollama/blob/main/docs/README.md).
|
72 |
+
|
73 |
+
### Citation
|
74 |
+
**BibTeX:**
|
75 |
+
```
|
76 |
+
@article{llama3.1-8b-reasoning-grpo-gguf,
|
77 |
+
author = {Azzedde},
|
78 |
+
title = {Llama3.1-8B-Reasoning-GRPO-GGUF: A Logical Reasoning LLM in GGUF Format},
|
79 |
+
year = {2025},
|
80 |
+
url = {https://huggingface.co/Azzedde/llama3.1-8b-reasoning-grpo-gguf}
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
**Contact**: [Hugging Face Profile](https://huggingface.co/Azzedde)
|
85 |
+
|