Safetensors
Chinese
English
qwen2
Azure99 commited on
Commit
7bc5a97
·
verified ·
1 Parent(s): fd4d07b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -3
README.md CHANGED
@@ -1,3 +1,66 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Azure99/blossom-v6-sft-stage1
5
+ - Azure99/blossom-v6-sft-stage2
6
+ language:
7
+ - zh
8
+ - en
9
+ base_model:
10
+ - Qwen/Qwen2.5-14B
11
+ ---
12
+ # **BLOSSOM-V6-14B**
13
+
14
+ [💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/)
15
+
16
+ ### Introduction
17
+
18
+ Blossom is a powerful open-source conversational large language model that provides reproducible post-training data, dedicated to delivering an open, powerful, and cost-effective locally accessible general-purpose model for everyone.
19
+
20
+ | Chat Model | Resource | Base Model |
21
+ | ------------------------------------------------------------ | ------------------------------------------------------------ | ----------- |
22
+ | [Blossom-V6-32B](https://huggingface.co/Azure99/Blossom-V6-32B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-32B-AWQ-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-32B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-32B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:32b) | Qwen2.5-32B |
23
+ | [Blossom-V6-14B](https://huggingface.co/Azure99/Blossom-V6-14B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-14B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-14B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-14B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:14b) | Qwen2.5-14B |
24
+ | [Blossom-V6-7B](https://huggingface.co/Azure99/Blossom-V6-7B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-7B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-7B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-7B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:7b) | Qwen2.5-7B |
25
+
26
+ You can find the training data here: [Blossom-V6-SFT-Stage1](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage1) (1 epoch)、[Blossom-V6-SFT-Stage2](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage2) (3 epoch)。
27
+
28
+ ### **Data Synthesis Workflow Overview**
29
+
30
+ Primarily employs three cost-effective models—Yi-Lightning, Deepseek-V2.5, and Doubao-Pro-32K (denoted as A, B, C)—to regenerate responses under different scenarios using tailored synthesis strategies.
31
+
32
+ For example:
33
+
34
+ - In objective scenarios like mathematics (where answers are unique), Model A first generates responses as a "teacher." If reference answers exist in the source data, Model B verifies the correctness of A's responses against them. If no reference answers exist, Model C generates a second response, and Model B checks consistency between A and C's outputs. Inconsistent responses are filtered out.
35
+ - For subjective scenarios, three models cross-evaluate each other. For instance, Models A and B generate responses to a question, and Model C evaluates which is better. The superior response may be retained as training data or used for preference data construction. To mitigate model bias, roles (respondent/evaluator) are randomly assigned to A, B, and C in each instance.
36
+
37
+ Additional rule-based filtering is applied, such as:
38
+
39
+ - N-Gram filtering to remove data with many repetitions.
40
+ - Discarding questions containing toxic content that triggers teacher model refusals.
41
+
42
+ Further technical details will be released in the future. The data is synthesized by the [🌸BlossomData](https://github.com/Azure99/BlossomData) framework.
43
+
44
+ ### Inference
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+
49
+ MODEL = "Azure99/Blossom-V6-14B"
50
+
51
+ model = AutoModelForCausalLM.from_pretrained(MODEL)
52
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
53
+
54
+ messages = [
55
+ {"role": "user", "content": "北京有什么好吃的"}
56
+ ]
57
+
58
+ formatted_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
59
+ input_ids = tokenizer([formatted_input], return_tensors="pt").to(model.device).input_ids
60
+ generated_ids = model.generate(input_ids, max_new_tokens=512)
61
+ generated_ids = [
62
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
63
+ ]
64
+
65
+ print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
66
+ ```