{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "5d2d2387", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 8, "id": "0c5af0b5", "metadata": {}, "outputs": [], "source": [ "arr1=np.array((1,2,4,7,8,9,4,5,6,7,9))" ] }, { "cell_type": "code", "execution_count": 9, "id": "2e0d0565", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "single dimentional: [1 2 4 7 8 9 4 5 6 7 9]\n" ] } ], "source": [ "print(\"single dimentional:\",arr1)" ] }, { "cell_type": "code", "execution_count": 6, "id": "51a43691", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('int64')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr1.dtype" ] }, { "cell_type": "code", "execution_count": 11, "id": "f6520b45", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-d arrays:\n", " [[ 10 20 30 40]\n", " [100 200 300 400]]\n" ] } ], "source": [ "arr2=np.array([[10,20,30,40],[100,200,300,400]])\n", "print(\"2-d arrays:\\n\",arr2)" ] }, { "cell_type": "code", "execution_count": 12, "id": "319161ca", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "arr1: 1\n", "arr2: 2\n" ] } ], "source": [ "#checking thair dimensions:\n", "print(\"arr1:\",arr1.ndim)\n", "print(\"arr2:\",arr2.ndim)" ] }, { "cell_type": "code", "execution_count": 15, "id": "c71c8ff9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3-d array:\n", " [[[ 1 2 3 4]\n", " [ 10 20 30 40]\n", " [100 200 300 400]]]\n", "arr3: 3\n" ] } ], "source": [ "arr3=np.array([[[1,2,3,4],[10,20,30,40],[100,200,300,400]]])\n", "print(\"3-d array:\\n\",arr3)\n", "print(\"arr3:\",arr3.ndim)" ] }, { "cell_type": "code", "execution_count": 16, "id": "a426eb80", "metadata": {}, "outputs": [], "source": [ "#for casual cheking with data frames :\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 25, "id": "3c61781d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1\n", "1 2\n", "2 4\n", "3 7\n", "4 8\n", "5 9\n", "6 4\n", "7 5\n", "8 6\n", "9 7\n", "10 9\n", "dtype: int64\n" ] } ], "source": [ "d_frame=pd.Series(arr1)\n", "print(d_frame)" ] }, { "cell_type": "code", "execution_count": 26, "id": "aeed557b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0 1 2 3\n", "0 10 20 30 40\n", "1 100 200 300 400\n" ] } ], "source": [ "#array to data frame\n", "#here the data frame support only the 2-d arry for printing other wise the print function will show error message:\n", "d_frame=pd.DataFrame(arr2)\n", "print(d_frame)" ] }, { "cell_type": "code", "execution_count": 27, "id": "88ae926a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 4)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d_frame.shape" ] }, { "cell_type": "code", "execution_count": 28, "id": "5d15a9ed", "metadata": {}, "outputs": [], "source": [ "#data frame to array\n", "check1=np.array(d_frame)" ] }, { "cell_type": "code", "execution_count": 29, "id": "c4c87770", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 10 20 30 40]\n", " [100 200 300 400]]\n" ] } ], "source": [ "print(check1)" ] }, { "cell_type": "code", "execution_count": 34, "id": "e84c9006", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1-D:\t [1 2 4 7 8 9 4 5 6 7 9] \n", "\n", "2-D:\t [[ 10 20 30 40]\n", " [100 200 300 400]] \n", "\n", "3-D:\t [[[ 1 2 3 4]\n", " [ 10 20 30 40]\n", " [100 200 300 400]]]\n" ] } ], "source": [ "print(\"1-D:\\t\",arr1,\"\\n\")\n", "print(\"2-D:\\t\",arr2,\"\\n\")\n", "print(\"3-D:\\t\",arr3)" ] }, { "cell_type": "code", "execution_count": 41, "id": "df3e081a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 4 7 8 9 4 5 6 7 9]\n", "[1 2 4 7 8 9 4]\n" ] } ], "source": [ "#nupy array indexing with step value:\n", "print(arr1)\n", "print(arr1[0:7])" ] }, { "cell_type": "code", "execution_count": 44, "id": "ab12aa05", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first half of the elements: [1 2 4 7 8]\n" ] } ], "source": [ "#half of the elements are printing:\n", "print(\"first half of the elements:\",arr1[:len(arr1)//2])" ] }, { "cell_type": "code", "execution_count": 45, "id": "55929e0a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "2\n", "4\n", "7\n", "8\n", "9\n", "4\n", "5\n", "6\n", "7\n", "9\n" ] } ], "source": [ "for i in arr1:\n", " print(i)" ] }, { "cell_type": "code", "execution_count": 49, "id": "0e15e750", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "2\n", "3\n", "4\n", "10\n", "20\n", "30\n", "40\n", "100\n", "200\n", "300\n", "400\n" ] } ], "source": [ "#iterating the 3-D array in one loop:\n", "for i in np.nditer(arr3[:,::1]):\n", " print(i)" ] }, { "cell_type": "code", "execution_count": 67, "id": "141305fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 4)" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr2.shape" ] }, { "cell_type": "code", "execution_count": 68, "id": "a8cf04d8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1, 3, 4)" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#doubt:ask to sir:\n", "arr3.shape" ] }, { "cell_type": "code", "execution_count": 69, "id": "661a05b5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.ndim(arr3)" ] }, { "cell_type": "code", "execution_count": 70, "id": "2e53a428", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(11,)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr1.shape" ] }, { "cell_type": "code", "execution_count": 73, "id": "f52621d0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "#accessign the nd arry elements:\n", "#element - 1st row and first column\n", "print(arr2[0,0])" ] }, { "cell_type": "code", "execution_count": 76, "id": "78f2bb26", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "300\n" ] } ], "source": [ "#3-d arrray:\n", "print(arr3[0,2,2])" ] }, { "cell_type": "code", "execution_count": 81, "id": "f1dcee88", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 10 20 400 183 142]\n" ] } ], "source": [ "#for the absolute we willl create another array with -ve value\n", "arr4=np.array([-10,-20,-400,-183,142])\n", "print(abs(arr4))" ] }, { "cell_type": "code", "execution_count": 82, "id": "27348c65", "metadata": {}, "outputs": [], "source": [ "#reshaping\n", "#add or remove from the existing array" ] }, { "cell_type": "code", "execution_count": 84, "id": "6248d02a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([1, 2, 4, 7, 8, 9]), array([4, 5, 6, 7, 9])]" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array_split(arr1,2)" ] }, { "cell_type": "code", "execution_count": 87, "id": "072c9d81", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([[10, 20, 30, 40]]), array([[100, 200, 300, 400]])]" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array_split(arr2,2)" ] }, { "cell_type": "code", "execution_count": 88, "id": "4883ec53", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([[[ 1, 2, 3, 4],\n", " [ 10, 20, 30, 40],\n", " [100, 200, 300, 400]]]),\n", " array([], shape=(0, 3, 4), dtype=int64),\n", " array([], shape=(0, 3, 4), dtype=int64)]" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array_split(arr3,3)" ] }, { "cell_type": "code", "execution_count": 90, "id": "02a8971e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([1, 2, 4]), array([7, 8]), array([9, 4]), array([5, 6]), array([7, 9])]" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array_split(arr1,5)" ] }, { "cell_type": "code", "execution_count": 103, "id": "e5a999ce", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5\n" ] } ], "source": [ "print(len(arr4))" ] }, { "cell_type": "code", "execution_count": 106, "id": "7b58a5c0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[ 1 2]\n", " [ 3 4]\n", " [ 5 6]]\n", "\n", " [[ 7 8]\n", " [ 9 10]\n", " [11 12]]]\n" ] } ], "source": [ "arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])\n", "\n", "newarr = arr.reshape(2, 3, 2)\n", "print(newarr)" ] }, { "cell_type": "code", "execution_count": 107, "id": "4bb019ce", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 4 7 8 9 4 5 6 7 9]\n" ] } ], "source": [ "#splitting the array:\n", "print(arr1)" ] }, { "cell_type": "code", "execution_count": 109, "id": "6fbdf5b6", "metadata": {}, "outputs": [], "source": [ "newarr2=np.array_split(arr1,3)" ] }, { "cell_type": "code", "execution_count": 111, "id": "a254994b", "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "only integer scalar arrays can be converted to a scalar index", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Input \u001b[0;32mIn [111]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m newarr2:\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mnewarr2\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m)\n", "\u001b[0;31mTypeError\u001b[0m: only integer scalar arrays can be converted to a scalar index" ] } ], "source": [ "for i in newarr2:\n", " print(newarr2[i])" ] }, { "cell_type": "code", "execution_count": 117, "id": "45ede19a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 4 7]\n", "[8 9 4 5]\n", "[6 7 9]\n" ] } ], "source": [ "print(newarr2[0])\n", "print(newarr2[1])\n", "print(newarr2[2])" ] }, { "cell_type": "code", "execution_count": 118, "id": "b6dc5efb", "metadata": {}, "outputs": [], "source": [ "##searching arrays" ] }, { "cell_type": "code", "execution_count": 126, "id": "db8ca2e0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 2 4 7 8 9 4 5 6 7 9]\n", "(array([], dtype=int64),)\n" ] } ], "source": [ "arr1" ] }, { "cell_type": "code", "execution_count": 129, "id": "b0d63d87", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(array([0, 2, 3]),)\n" ] } ], "source": [ "arr = np.array([1, 2, 1, 1, 5, 6, 7, 8])\n", "\n", "x = np.where(arr == 1)\n", "\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 134, "id": "32dd0731", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(array([4, 7]),)\n" ] } ], "source": [ "arr=np.array((1,2,3,4,5,2,3,5,6,7,8))\n", "x=np.where(arr==5)\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 136, "id": "709be631", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8\n" ] } ], "source": [ "x = np.searchsorted(arr, 6)\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 138, "id": "eaa35f66", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 2 2 3 5 6 8 8]\n" ] } ], "source": [ "#sorting:\n", "arr=np.array((2,5,2,8,0,3,6,8))\n", "print(np.sort(arr))" ] }, { "cell_type": "code", "execution_count": 139, "id": "66b658a1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['azar' 'parmesh' 'ravi' 'sanath']\n" ] } ], "source": [ "arr=np.array((\"sanath\",\"ravi\",\"parmesh\",\"azar\"))\n", "print(np.sort(arr))" ] }, { "cell_type": "code", "execution_count": 140, "id": "2aef5294", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[10 20 29]\n", " [ 0 20 83]]\n" ] } ], "source": [ "#we can also sort the 2-d array:\n", "arr=np.array([[20,10,29],[0,20,83]])\n", "print(np.sort(arr))" ] }, { "cell_type": "code", "execution_count": 143, "id": "60eeeed6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 3 4]\n" ] } ], "source": [ "arr=np.array([1,2,3,4])\n", "x=[True,False,True,True]\n", "print(arr[x])" ] }, { "cell_type": "code", "execution_count": 144, "id": "35d8dba5", "metadata": {}, "outputs": [], "source": [ "#nupy rondom class working:\n", "#we can predict theese numbers:\n", "#machine will generate this:\n", "from numpy import random" ] }, { "cell_type": "code", "execution_count": 153, "id": "859d5dbb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "77" ] }, "execution_count": 153, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x=random.randint(100)\n", "x" ] }, { "cell_type": "code", "execution_count": 148, "id": "7cfa7040", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "88\n" ] } ], "source": [ "print(x)" ] }, { "cell_type": "code", "execution_count": 154, "id": "a1748723", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.88562907, 0.22932804, 0.90857795, 0.2838597 , 0.76885629,\n", " 0.87201837, 0.5121362 , 0.89441225, 0.67149354, 0.03825343])" ] }, "execution_count": 154, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x=random.rand(10)\n", "x" ] }, { "cell_type": "code", "execution_count": 170, "id": "62ef85d8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 6, 16, 29, 50, 6, 0, 99, 11, 88, 33])" ] }, "execution_count": 170, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#generating 10 randoom numbers in given range:\n", "#and this method is also called as the creating the 2-d array:\n", "x=random.randint(100,size=10)\n", "x" ] }, { "cell_type": "code", "execution_count": 158, "id": "34d5e7ce", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[40, 55, 86, 42, 85, 35, 18, 13, 11, 35],\n", " [66, 31, 61, 65, 23, 49, 65, 30, 90, 3],\n", " [90, 53, 95, 32, 45, 85, 31, 10, 52, 69]])" ] }, "execution_count": 158, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#creating the 3-d array from the rndom :\n", "x=random.randint(100,size=(3,10))\n", "x" ] }, { "cell_type": "code", "execution_count": 159, "id": "8ae2661e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(3, 10)" ] }, "execution_count": 159, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x.shape" ] }, { "cell_type": "code", "execution_count": 171, "id": "37d6319d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "29" ] }, "execution_count": 171, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#upto now we have created random array:\n", "# but now we can get the random element from the generatd arry:\n", "#only for the 1-d array\n", "y=random.choice(x)\n", "y" ] }, { "cell_type": "code", "execution_count": 174, "id": "7decc1e0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[5, 7, 9, 7, 3],\n", " [9, 9, 5, 7, 7],\n", " [5, 5, 5, 9, 5]])" ] }, "execution_count": 174, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#now we can get the choice of number from the 2-d array by using the size:\n", "arr2 = random.choice([3, 5, 7, 9], size=(3, 5))\n", "arr2" ] }, { "cell_type": "code", "execution_count": 179, "id": "415e52b4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 3 2 4]\n" ] } ], "source": [ "#rndom permutatiions\n", "arr=np.array([1,2,3,4])\n", "random.shuffle(arr)\n", "print(arr)" ] }, { "cell_type": "code", "execution_count": 181, "id": "40dbec86", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4 1 2 3]\n" ] } ], "source": [ "print(random.permutation(arr))" ] }, { "cell_type": "code", "execution_count": 189, "id": "bb115669", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[5, 5, 5, 96, 86]\n" ] } ], "source": [ "#zip method:\n", "x1=[1,2,3,93,82]\n", "x2=[4,3,2,3,4,]\n", "z=[]\n", "for i,j in zip(x1,x2):\n", " z.append(i+j)\n", "print(z)" ] }, { "cell_type": "code", "execution_count": 199, "id": "2dfc2e91", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 5 5 5 96 86]\n", "[-3 -1 1 90 78]\n", "[ 4 6 6 279 328]\n", "[ 0.25 0.66666667 1.5 31. 20.5 ]\n", "[ 1 8 9 804357 45212176]\n", "[1 2 1 0 2]\n", "[1 2 1 0 2]\n", "(array([ 0, 0, 1, 31, 20]), array([1, 2, 1, 0, 2]))\n" ] } ], "source": [ "#arithmatic operations:\n", "print(np.add(x1,x2))\n", "print(np.subtract(x1,x2))\n", "print(np.multiply(x1,x2))\n", "print(np.divide(x1,x2))\n", "print(np.power(x1,x2))\n", "print(np.mod(x1,x2))\n", "print(np.remainder(x1,x2))\n", "print(np.divmod(x1,x2))\n", "print(np.(x1,x2))" ] }, { "cell_type": "code", "execution_count": null, "id": "6b93fdd9", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }