Text Classification
Transformers
PyTorch
Safetensors
English
bert
Inference Endpoints
AyoubChLin commited on
Commit
0e2f689
·
1 Parent(s): 64fc275

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -118
README.md CHANGED
@@ -8,6 +8,10 @@ language:
8
  metrics:
9
  - accuracy
10
  pipeline_tag: text-classification
 
 
 
 
11
  ---
12
 
13
  # Model Card for Model ID
@@ -39,33 +43,6 @@ This modelcard aims to be a base template for new models. It has been generated
39
  - **Paper [optional]:** [More Information Needed]
40
  - **Demo [optional]:** [More Information Needed]
41
 
42
- ## Uses
43
-
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
- ### Direct Use
47
-
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
-
58
- ### Out-of-Scope Use
59
-
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
 
70
  ### Recommendations
71
 
@@ -85,7 +62,7 @@ Use the code below to get started with the model.
85
 
86
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
 
88
- [More Information Needed]
89
 
90
 
91
 
@@ -97,113 +74,26 @@ Use the code below to get started with the model.
97
  - max_seq_length = 256
98
  - num_train_epochs = 2.0
99
 
100
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
101
 
102
- #### Preprocessing [optional]
103
-
104
- [More Information Needed]
105
-
106
-
107
- #### Speeds, Sizes, Times [optional]
108
-
109
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
-
111
- [More Information Needed]
112
-
113
- ## Evaluation
114
-
115
- <!-- This section describes the evaluation protocols and provides the results. -->
116
-
117
- ### Testing Data, Factors & Metrics
118
 
119
  #### Testing Data
120
 
121
- <!-- This should link to a Data Card if possible. -->
122
-
123
- [More Information Needed]
124
 
125
- #### Factors
126
-
127
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
-
129
- [More Information Needed]
130
 
131
  #### Metrics
132
 
133
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
 
135
- [More Information Needed]
136
 
137
  ### Results
138
 
139
- [More Information Needed]
140
 
141
  #### Summary
142
 
143
 
144
 
145
- ## Model Examination [optional]
146
-
147
- <!-- Relevant interpretability work for the model goes here -->
148
 
149
- [More Information Needed]
150
-
151
- ## Environmental Impact
152
-
153
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
-
155
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
-
157
- - **Hardware Type:** [More Information Needed]
158
- - **Hours used:** [More Information Needed]
159
- - **Cloud Provider:** [More Information Needed]
160
- - **Compute Region:** [More Information Needed]
161
- - **Carbon Emitted:** [More Information Needed]
162
-
163
- ## Technical Specifications [optional]
164
-
165
- ### Model Architecture and Objective
166
-
167
- [More Information Needed]
168
-
169
- ### Compute Infrastructure
170
-
171
- [More Information Needed]
172
-
173
- #### Hardware
174
-
175
- [More Information Needed]
176
-
177
- #### Software
178
-
179
- [More Information Needed]
180
-
181
- ## Citation [optional]
182
-
183
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
-
185
- **BibTeX:**
186
-
187
- [More Information Needed]
188
-
189
- **APA:**
190
-
191
- [More Information Needed]
192
-
193
- ## Glossary [optional]
194
-
195
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
-
197
- [More Information Needed]
198
-
199
- ## More Information [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Authors [optional]
204
-
205
- [More Information Needed]
206
 
207
- ## Model Card Contact
208
 
209
- [More Information Needed]
 
8
  metrics:
9
  - accuracy
10
  pipeline_tag: text-classification
11
+ widget:
12
+ - text: money in the pocket
13
+ - text: no one can win this cup in quatar..
14
+ - text: new transformers architicture can build a large language model with low ressources
15
  ---
16
 
17
  # Model Card for Model ID
 
43
  - **Paper [optional]:** [More Information Needed]
44
  - **Demo [optional]:** [More Information Needed]
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ### Recommendations
48
 
 
62
 
63
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
64
 
65
+ (AyoubChLin/20NewsGroup-AgNews-CnnNews)[https://huggingface.co/datasets/AyoubChLin/20NewsGroup-AgNews-CnnNews]
66
 
67
 
68
 
 
74
  - max_seq_length = 256
75
  - num_train_epochs = 2.0
76
 
 
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  #### Testing Data
80
 
81
+ (CNN-NEWS-Article)[https://huggingface.co/datasets/AyoubChLin/CNN_News_Articles_2011-2022]
 
 
82
 
 
 
 
 
 
83
 
84
  #### Metrics
85
 
 
86
 
87
+ Accuracy
88
 
89
  ### Results
90
 
91
+ (CNN-NEWS-Article)[https://huggingface.co/datasets/AyoubChLin/CNN_News_Articles_2011-2022] : 0.957791 / LOSS : 0.197338
92
 
93
  #### Summary
94
 
95
 
96
 
 
 
 
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
 
99