--- library_name: transformers tags: - summarization - dialogue --- # Model Card for phi-2-dialogsum This model is designed for **dialogue summarization**. It takes multi-turn conversations as input and produces concise summaries. ## Model Details ### Model Description This is the model card for **phi-2-dialogsum**, a dialogue summarization model built on top of 🤗 Transformers. It leverages phi-2 backbone model, fine-tuned for summarizing dialogues. - **Developed by:** Aygün Varol & Malik Sami - **Model type:** Generative Language Model - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** [Phi-2](https://huggingface.co/microsoft/phi-2) ### Model Sources - **Repository (GitHub):** [AygunVarol/phi-2-dialogsum](https://github.com/AygunVarol/phi-2-dialogsum) ## Uses ### Direct Use This model can be used directly for **dialogue summarization** tasks. For example, given a multi-turn conversation, the model will produce a succinct summary capturing the key information and context. ## How to Get Started with the Model Below is a quick code snippet to load and run inference with this model: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "Aygun/phi-2-dialogsum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_text = """Speaker1: Hi, how are you doing today? Speaker2: I'm good, thanks! Just finished my coffee. Speaker1: That's nice. Did you sleep well last night? Speaker2: Actually, I slept quite late watching a new show on Netflix.""" inputs = tokenizer([input_text], max_length=512, truncation=True, return_tensors="pt") summary_ids = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print("Summary:", summary) ``` ## Training Details Training dataset [Dialogsum](https://huggingface.co/datasets/neil-code/dialogsum-test) ## Evaluation ORIGINAL MODEL: {'rouge1': 0.2990526195120211, 'rouge2': 0.10874019046839419, 'rougeL': 0.21186900909813286, 'rougeLsum': 0.22342464591439556} PEFT MODEL: {'rouge1': 0.3132817683433486, 'rouge2': 0.1070363134080079, 'rougeL': 0.23226760188839027, 'rougeLsum': 0.25947902747914586} ## Absolute percentage improvement of PEFT MODEL over ORIGINAL MODEL rouge1: 1.42% rouge2: -0.17% rougeL: 2.04% rougeLsum: 3.61%