File size: 2,540 Bytes
1e7c1ac
 
bf236d3
 
 
1e7c1ac
 
bf236d3
1e7c1ac
 
bf236d3
1e7c1ac
 
 
 
 
77ea62b
1e7c1ac
e49fba9
 
bf236d3
e49fba9
 
1e7c1ac
e49fba9
1e7c1ac
40b6489
1e7c1ac
 
 
 
bf236d3
1e7c1ac
 
 
bf236d3
1e7c1ac
bf236d3
 
1e7c1ac
bf236d3
 
 
1e7c1ac
bf236d3
 
 
 
 
1e7c1ac
bf236d3
 
1e7c1ac
5106c20
 
 
 
 
40b6489
5106c20
 
 
 
 
 
 
 
 
 
1e7c1ac
5106c20
0956f7b
5106c20
0956f7b
5106c20
0956f7b
5106c20
1e7c1ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
tags:
- summarization
- dialogue
---

# Model Card for phi-2-dialogsum

<!-- Provide a quick summary of what the model is/does. -->
This model is designed for **dialogue summarization**. It takes multi-turn conversations as input and produces concise summaries. 

## Model Details

### Model Description

This is the model card for **phi-2-dialogsum**, a dialogue summarization model built on top of 🤗 Transformers. It leverages phi-2 backbone model, fine-tuned for summarizing dialogues.

- **Developed by:** Aygün Varol & Malik Sami
- **Model type:** Generative Language Model
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** [Phi-2](https://huggingface.co/microsoft/phi-2)

### Model Sources

- **Repository (GitHub):** [AygunVarol/phi-2-dialogsum](https://github.com/AygunVarol/phi-2-dialogsum)

## Uses

### Direct Use
This model can be used directly for **dialogue summarization** tasks. For example, given a multi-turn conversation, the model will produce a succinct summary capturing the key information and context.

## How to Get Started with the Model

Below is a quick code snippet to load and run inference with this model:

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

model_name = "YourHuggingFaceUsername/phi-2-dialogsum"  # replace with the correct HF model ID
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

input_text = """Speaker1: Hi, how are you doing today?
Speaker2: I'm good, thanks! Just finished my coffee.
Speaker1: That's nice. Did you sleep well last night?
Speaker2: Actually, I slept quite late watching a new show on Netflix."""
inputs = tokenizer([input_text], max_length=512, truncation=True, return_tensors="pt")

summary_ids = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)

print("Summary:", summary)
```

## Training Details

Training dataset [Dialogsum](https://huggingface.co/datasets/neil-code/dialogsum-test)

## Evaluation

ORIGINAL MODEL:
{'rouge1': 0.2990526195120211, 'rouge2': 0.10874019046839419, 'rougeL': 0.21186900909813286, 'rougeLsum': 0.22342464591439556}

PEFT MODEL:
{'rouge1': 0.3132817683433486, 'rouge2': 0.1070363134080079, 'rougeL': 0.23226760188839027, 'rougeLsum': 0.25947902747914586}

## Absolute percentage improvement of PEFT MODEL over ORIGINAL MODEL

rouge1: 1.42%

rouge2: -0.17%

rougeL: 2.04%

rougeLsum: 3.61%