File size: 4,406 Bytes
a4b5f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfb6dc3
a4b5f2c
 
 
 
 
 
 
 
 
cfb6dc3
 
a4b5f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfb6dc3
a4b5f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
cfb6dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4b5f2c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---

license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-RH
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6822429906542056
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-tiny-patch4-window8-256-RH

This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6396
- Accuracy: 0.6822

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 8    | 4.6265          | 0.4112   |
| 4.5369        | 2.0   | 16   | 4.5295          | 0.4112   |
| 4.6305        | 3.0   | 24   | 4.1439          | 0.4112   |
| 4.0918        | 4.0   | 32   | 3.3693          | 0.4112   |
| 3.1767        | 5.0   | 40   | 2.4325          | 0.4112   |
| 3.1767        | 6.0   | 48   | 1.5422          | 0.4112   |
| 2.0113        | 7.0   | 56   | 0.8834          | 0.4112   |
| 1.0593        | 8.0   | 64   | 0.6790          | 0.5888   |
| 0.696         | 9.0   | 72   | 0.7044          | 0.5888   |
| 0.6893        | 10.0  | 80   | 0.6778          | 0.5888   |
| 0.6893        | 11.0  | 88   | 0.6866          | 0.5888   |
| 0.6961        | 12.0  | 96   | 0.6934          | 0.5888   |
| 0.7329        | 13.0  | 104  | 0.6915          | 0.5888   |
| 0.6948        | 14.0  | 112  | 0.6762          | 0.5888   |
| 0.6771        | 15.0  | 120  | 0.6795          | 0.5888   |
| 0.6771        | 16.0  | 128  | 0.6801          | 0.5888   |
| 0.6763        | 17.0  | 136  | 0.6820          | 0.5888   |
| 0.6822        | 18.0  | 144  | 0.6800          | 0.5888   |
| 0.6723        | 19.0  | 152  | 0.6741          | 0.5888   |
| 0.6757        | 20.0  | 160  | 0.6815          | 0.5888   |
| 0.6757        | 21.0  | 168  | 0.6729          | 0.5888   |
| 0.6711        | 22.0  | 176  | 0.6812          | 0.5888   |
| 0.6784        | 23.0  | 184  | 0.6781          | 0.5794   |
| 0.6665        | 24.0  | 192  | 0.6698          | 0.5794   |
| 0.6723        | 25.0  | 200  | 0.6647          | 0.5981   |
| 0.6723        | 26.0  | 208  | 0.6762          | 0.5794   |
| 0.6675        | 27.0  | 216  | 0.6597          | 0.5701   |
| 0.6628        | 28.0  | 224  | 0.6563          | 0.6355   |
| 0.6478        | 29.0  | 232  | 0.6791          | 0.5794   |
| 0.6642        | 30.0  | 240  | 0.6574          | 0.5888   |
| 0.6642        | 31.0  | 248  | 0.6556          | 0.5607   |
| 0.654         | 32.0  | 256  | 0.6523          | 0.5888   |
| 0.6602        | 33.0  | 264  | 0.6464          | 0.6262   |
| 0.6535        | 34.0  | 272  | 0.6450          | 0.6168   |
| 0.6506        | 35.0  | 280  | 0.6550          | 0.5794   |
| 0.6506        | 36.0  | 288  | 0.6438          | 0.6075   |
| 0.6533        | 37.0  | 296  | 0.6396          | 0.6822   |
| 0.6443        | 38.0  | 304  | 0.6383          | 0.6636   |
| 0.6263        | 39.0  | 312  | 0.6378          | 0.6449   |
| 0.6283        | 40.0  | 320  | 0.6379          | 0.6449   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0