Augusto777 commited on
Commit
0f1978d
·
verified ·
1 Parent(s): 8f515eb

End of training

Browse files
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-tiny-patch4-window8-256
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8090909090909091
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy
32
+
33
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5203
36
+ - Accuracy: 0.8091
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 40
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 1.0 | 5 | 1.6054 | 0.4909 |
71
+ | 1.6039 | 2.0 | 10 | 1.5774 | 0.4909 |
72
+ | 1.6039 | 3.0 | 15 | 1.4627 | 0.4909 |
73
+ | 1.4766 | 4.0 | 20 | 1.3211 | 0.4909 |
74
+ | 1.4766 | 5.0 | 25 | 1.2294 | 0.4909 |
75
+ | 1.2308 | 6.0 | 30 | 1.0657 | 0.4909 |
76
+ | 1.2308 | 7.0 | 35 | 0.9504 | 0.6545 |
77
+ | 1.017 | 8.0 | 40 | 0.8463 | 0.7364 |
78
+ | 1.017 | 9.0 | 45 | 0.7463 | 0.7455 |
79
+ | 0.8345 | 10.0 | 50 | 0.6948 | 0.7455 |
80
+ | 0.8345 | 11.0 | 55 | 0.6460 | 0.7545 |
81
+ | 0.7594 | 12.0 | 60 | 0.6403 | 0.7545 |
82
+ | 0.7594 | 13.0 | 65 | 0.6319 | 0.7545 |
83
+ | 0.7228 | 14.0 | 70 | 0.5999 | 0.7455 |
84
+ | 0.7228 | 15.0 | 75 | 0.5922 | 0.7545 |
85
+ | 0.6851 | 16.0 | 80 | 0.5955 | 0.7636 |
86
+ | 0.6851 | 17.0 | 85 | 0.5731 | 0.7545 |
87
+ | 0.6549 | 18.0 | 90 | 0.5603 | 0.7818 |
88
+ | 0.6549 | 19.0 | 95 | 0.5386 | 0.7818 |
89
+ | 0.643 | 20.0 | 100 | 0.5424 | 0.7727 |
90
+ | 0.643 | 21.0 | 105 | 0.5295 | 0.7909 |
91
+ | 0.5951 | 22.0 | 110 | 0.5203 | 0.8091 |
92
+ | 0.5951 | 23.0 | 115 | 0.5162 | 0.7909 |
93
+ | 0.5913 | 24.0 | 120 | 0.5095 | 0.7818 |
94
+ | 0.5913 | 25.0 | 125 | 0.5140 | 0.7909 |
95
+ | 0.5462 | 26.0 | 130 | 0.5167 | 0.7636 |
96
+ | 0.5462 | 27.0 | 135 | 0.4943 | 0.7909 |
97
+ | 0.5538 | 28.0 | 140 | 0.4844 | 0.7636 |
98
+ | 0.5538 | 29.0 | 145 | 0.4821 | 0.7727 |
99
+ | 0.5497 | 30.0 | 150 | 0.4952 | 0.7727 |
100
+ | 0.5497 | 31.0 | 155 | 0.4995 | 0.7818 |
101
+ | 0.4923 | 32.0 | 160 | 0.4910 | 0.7727 |
102
+ | 0.4923 | 33.0 | 165 | 0.5029 | 0.7818 |
103
+ | 0.5228 | 34.0 | 170 | 0.5083 | 0.7818 |
104
+ | 0.5228 | 35.0 | 175 | 0.4984 | 0.7909 |
105
+ | 0.4986 | 36.0 | 180 | 0.4914 | 0.7909 |
106
+ | 0.4986 | 37.0 | 185 | 0.4926 | 0.7909 |
107
+ | 0.5154 | 38.0 | 190 | 0.4915 | 0.8 |
108
+ | 0.5154 | 39.0 | 195 | 0.4886 | 0.8 |
109
+ | 0.5081 | 40.0 | 200 | 0.4875 | 0.8 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.36.2
115
+ - Pytorch 2.1.2+cu118
116
+ - Datasets 2.16.1
117
+ - Tokenizers 0.15.0
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 40.0,
3
+ "eval_accuracy": 0.8090909090909091,
4
+ "eval_loss": 0.5203222036361694,
5
+ "eval_runtime": 0.6076,
6
+ "eval_samples_per_second": 181.031,
7
+ "eval_steps_per_second": 6.583,
8
+ "train_loss": 0.750064127445221,
9
+ "train_runtime": 356.9379,
10
+ "train_samples_per_second": 69.816,
11
+ "train_steps_per_second": 0.56
12
+ }
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/swinv2-tiny-patch4-window8-256",
3
+ "architectures": [
4
+ "Swinv2ForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "depths": [
8
+ 2,
9
+ 2,
10
+ 6,
11
+ 2
12
+ ],
13
+ "drop_path_rate": 0.1,
14
+ "embed_dim": 96,
15
+ "encoder_stride": 32,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.0,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "Mild",
21
+ "1": "Moderate",
22
+ "2": "No_DR",
23
+ "3": "Proliferate_DR",
24
+ "4": "Severe"
25
+ },
26
+ "image_size": 256,
27
+ "initializer_range": 0.02,
28
+ "label2id": {
29
+ "Mild": 0,
30
+ "Moderate": 1,
31
+ "No_DR": 2,
32
+ "Proliferate_DR": 3,
33
+ "Severe": 4
34
+ },
35
+ "layer_norm_eps": 1e-05,
36
+ "mlp_ratio": 4.0,
37
+ "model_type": "swinv2",
38
+ "num_channels": 3,
39
+ "num_heads": [
40
+ 3,
41
+ 6,
42
+ 12,
43
+ 24
44
+ ],
45
+ "num_layers": 4,
46
+ "patch_size": 4,
47
+ "path_norm": true,
48
+ "pretrained_window_sizes": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "problem_type": "single_label_classification",
55
+ "qkv_bias": true,
56
+ "torch_dtype": "float32",
57
+ "transformers_version": "4.36.2",
58
+ "use_absolute_embeddings": false,
59
+ "window_size": 8
60
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 40.0,
3
+ "eval_accuracy": 0.8090909090909091,
4
+ "eval_loss": 0.5203222036361694,
5
+ "eval_runtime": 0.6076,
6
+ "eval_samples_per_second": 181.031,
7
+ "eval_steps_per_second": 6.583
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1f96515fab9dc9e7f57e7ccdd219306116ce8deddbbea81b330b3249533682
3
+ size 110359372
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.485,
7
+ 0.456,
8
+ 0.406
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.229,
13
+ 0.224,
14
+ 0.225
15
+ ],
16
+ "resample": 3,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 256,
20
+ "width": 256
21
+ }
22
+ }
runs/Oct12_17-58-48_DESKTOP-SKBE9FB/events.out.tfevents.1728777529.DESKTOP-SKBE9FB.14652.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9792bc671787aa2b7cce2e68160e97fc5dd15bbe2de4196ddceb48ac222355a
3
+ size 21112
runs/Oct12_17-58-48_DESKTOP-SKBE9FB/events.out.tfevents.1728777886.DESKTOP-SKBE9FB.14652.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f2f25b487b50e2eae2515b87ceec72618266c72689d8ae66e6ecec54783027d
3
+ size 411
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 40.0,
3
+ "train_loss": 0.750064127445221,
4
+ "train_runtime": 356.9379,
5
+ "train_samples_per_second": 69.816,
6
+ "train_steps_per_second": 0.56
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8090909090909091,
3
+ "best_model_checkpoint": "swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy\\checkpoint-110",
4
+ "epoch": 40.0,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.4909090909090909,
14
+ "eval_loss": 1.6053773164749146,
15
+ "eval_runtime": 1.1664,
16
+ "eval_samples_per_second": 94.304,
17
+ "eval_steps_per_second": 3.429,
18
+ "step": 5
19
+ },
20
+ {
21
+ "epoch": 2.0,
22
+ "learning_rate": 2.5e-05,
23
+ "loss": 1.6039,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 2.0,
28
+ "eval_accuracy": 0.4909090909090909,
29
+ "eval_loss": 1.577444314956665,
30
+ "eval_runtime": 0.6246,
31
+ "eval_samples_per_second": 176.117,
32
+ "eval_steps_per_second": 6.404,
33
+ "step": 10
34
+ },
35
+ {
36
+ "epoch": 3.0,
37
+ "eval_accuracy": 0.4909090909090909,
38
+ "eval_loss": 1.4627095460891724,
39
+ "eval_runtime": 0.6237,
40
+ "eval_samples_per_second": 176.372,
41
+ "eval_steps_per_second": 6.414,
42
+ "step": 15
43
+ },
44
+ {
45
+ "epoch": 4.0,
46
+ "learning_rate": 5e-05,
47
+ "loss": 1.4766,
48
+ "step": 20
49
+ },
50
+ {
51
+ "epoch": 4.0,
52
+ "eval_accuracy": 0.4909090909090909,
53
+ "eval_loss": 1.3211016654968262,
54
+ "eval_runtime": 0.5963,
55
+ "eval_samples_per_second": 184.459,
56
+ "eval_steps_per_second": 6.708,
57
+ "step": 20
58
+ },
59
+ {
60
+ "epoch": 5.0,
61
+ "eval_accuracy": 0.4909090909090909,
62
+ "eval_loss": 1.2294203042984009,
63
+ "eval_runtime": 0.6045,
64
+ "eval_samples_per_second": 181.978,
65
+ "eval_steps_per_second": 6.617,
66
+ "step": 25
67
+ },
68
+ {
69
+ "epoch": 6.0,
70
+ "learning_rate": 4.722222222222222e-05,
71
+ "loss": 1.2308,
72
+ "step": 30
73
+ },
74
+ {
75
+ "epoch": 6.0,
76
+ "eval_accuracy": 0.4909090909090909,
77
+ "eval_loss": 1.0656994581222534,
78
+ "eval_runtime": 0.6274,
79
+ "eval_samples_per_second": 175.336,
80
+ "eval_steps_per_second": 6.376,
81
+ "step": 30
82
+ },
83
+ {
84
+ "epoch": 7.0,
85
+ "eval_accuracy": 0.6545454545454545,
86
+ "eval_loss": 0.9504080414772034,
87
+ "eval_runtime": 0.6116,
88
+ "eval_samples_per_second": 179.842,
89
+ "eval_steps_per_second": 6.54,
90
+ "step": 35
91
+ },
92
+ {
93
+ "epoch": 8.0,
94
+ "learning_rate": 4.4444444444444447e-05,
95
+ "loss": 1.017,
96
+ "step": 40
97
+ },
98
+ {
99
+ "epoch": 8.0,
100
+ "eval_accuracy": 0.7363636363636363,
101
+ "eval_loss": 0.8463379740715027,
102
+ "eval_runtime": 0.6133,
103
+ "eval_samples_per_second": 179.362,
104
+ "eval_steps_per_second": 6.522,
105
+ "step": 40
106
+ },
107
+ {
108
+ "epoch": 9.0,
109
+ "eval_accuracy": 0.7454545454545455,
110
+ "eval_loss": 0.7462926506996155,
111
+ "eval_runtime": 0.6373,
112
+ "eval_samples_per_second": 172.596,
113
+ "eval_steps_per_second": 6.276,
114
+ "step": 45
115
+ },
116
+ {
117
+ "epoch": 10.0,
118
+ "learning_rate": 4.166666666666667e-05,
119
+ "loss": 0.8345,
120
+ "step": 50
121
+ },
122
+ {
123
+ "epoch": 10.0,
124
+ "eval_accuracy": 0.7454545454545455,
125
+ "eval_loss": 0.6947882771492004,
126
+ "eval_runtime": 0.6097,
127
+ "eval_samples_per_second": 180.42,
128
+ "eval_steps_per_second": 6.561,
129
+ "step": 50
130
+ },
131
+ {
132
+ "epoch": 11.0,
133
+ "eval_accuracy": 0.7545454545454545,
134
+ "eval_loss": 0.6460423469543457,
135
+ "eval_runtime": 0.6052,
136
+ "eval_samples_per_second": 181.744,
137
+ "eval_steps_per_second": 6.609,
138
+ "step": 55
139
+ },
140
+ {
141
+ "epoch": 12.0,
142
+ "learning_rate": 3.888888888888889e-05,
143
+ "loss": 0.7594,
144
+ "step": 60
145
+ },
146
+ {
147
+ "epoch": 12.0,
148
+ "eval_accuracy": 0.7545454545454545,
149
+ "eval_loss": 0.6403194069862366,
150
+ "eval_runtime": 0.6016,
151
+ "eval_samples_per_second": 182.831,
152
+ "eval_steps_per_second": 6.648,
153
+ "step": 60
154
+ },
155
+ {
156
+ "epoch": 13.0,
157
+ "eval_accuracy": 0.7545454545454545,
158
+ "eval_loss": 0.631945788860321,
159
+ "eval_runtime": 0.6046,
160
+ "eval_samples_per_second": 181.926,
161
+ "eval_steps_per_second": 6.615,
162
+ "step": 65
163
+ },
164
+ {
165
+ "epoch": 14.0,
166
+ "learning_rate": 3.611111111111111e-05,
167
+ "loss": 0.7228,
168
+ "step": 70
169
+ },
170
+ {
171
+ "epoch": 14.0,
172
+ "eval_accuracy": 0.7454545454545455,
173
+ "eval_loss": 0.5999094843864441,
174
+ "eval_runtime": 0.6056,
175
+ "eval_samples_per_second": 181.624,
176
+ "eval_steps_per_second": 6.605,
177
+ "step": 70
178
+ },
179
+ {
180
+ "epoch": 15.0,
181
+ "eval_accuracy": 0.7545454545454545,
182
+ "eval_loss": 0.5922093391418457,
183
+ "eval_runtime": 0.5972,
184
+ "eval_samples_per_second": 184.202,
185
+ "eval_steps_per_second": 6.698,
186
+ "step": 75
187
+ },
188
+ {
189
+ "epoch": 16.0,
190
+ "learning_rate": 3.3333333333333335e-05,
191
+ "loss": 0.6851,
192
+ "step": 80
193
+ },
194
+ {
195
+ "epoch": 16.0,
196
+ "eval_accuracy": 0.7636363636363637,
197
+ "eval_loss": 0.5955119132995605,
198
+ "eval_runtime": 0.6011,
199
+ "eval_samples_per_second": 182.985,
200
+ "eval_steps_per_second": 6.654,
201
+ "step": 80
202
+ },
203
+ {
204
+ "epoch": 17.0,
205
+ "eval_accuracy": 0.7545454545454545,
206
+ "eval_loss": 0.573071300983429,
207
+ "eval_runtime": 0.6051,
208
+ "eval_samples_per_second": 181.777,
209
+ "eval_steps_per_second": 6.61,
210
+ "step": 85
211
+ },
212
+ {
213
+ "epoch": 18.0,
214
+ "learning_rate": 3.055555555555556e-05,
215
+ "loss": 0.6549,
216
+ "step": 90
217
+ },
218
+ {
219
+ "epoch": 18.0,
220
+ "eval_accuracy": 0.7818181818181819,
221
+ "eval_loss": 0.5602535605430603,
222
+ "eval_runtime": 0.7062,
223
+ "eval_samples_per_second": 155.768,
224
+ "eval_steps_per_second": 5.664,
225
+ "step": 90
226
+ },
227
+ {
228
+ "epoch": 19.0,
229
+ "eval_accuracy": 0.7818181818181819,
230
+ "eval_loss": 0.5386339426040649,
231
+ "eval_runtime": 0.6221,
232
+ "eval_samples_per_second": 176.809,
233
+ "eval_steps_per_second": 6.429,
234
+ "step": 95
235
+ },
236
+ {
237
+ "epoch": 20.0,
238
+ "learning_rate": 2.777777777777778e-05,
239
+ "loss": 0.643,
240
+ "step": 100
241
+ },
242
+ {
243
+ "epoch": 20.0,
244
+ "eval_accuracy": 0.7727272727272727,
245
+ "eval_loss": 0.5423626899719238,
246
+ "eval_runtime": 0.6072,
247
+ "eval_samples_per_second": 181.171,
248
+ "eval_steps_per_second": 6.588,
249
+ "step": 100
250
+ },
251
+ {
252
+ "epoch": 21.0,
253
+ "eval_accuracy": 0.7909090909090909,
254
+ "eval_loss": 0.5295349955558777,
255
+ "eval_runtime": 0.6772,
256
+ "eval_samples_per_second": 162.427,
257
+ "eval_steps_per_second": 5.906,
258
+ "step": 105
259
+ },
260
+ {
261
+ "epoch": 22.0,
262
+ "learning_rate": 2.5e-05,
263
+ "loss": 0.5951,
264
+ "step": 110
265
+ },
266
+ {
267
+ "epoch": 22.0,
268
+ "eval_accuracy": 0.8090909090909091,
269
+ "eval_loss": 0.5203222036361694,
270
+ "eval_runtime": 0.6067,
271
+ "eval_samples_per_second": 181.322,
272
+ "eval_steps_per_second": 6.594,
273
+ "step": 110
274
+ },
275
+ {
276
+ "epoch": 23.0,
277
+ "eval_accuracy": 0.7909090909090909,
278
+ "eval_loss": 0.516213059425354,
279
+ "eval_runtime": 0.6272,
280
+ "eval_samples_per_second": 175.393,
281
+ "eval_steps_per_second": 6.378,
282
+ "step": 115
283
+ },
284
+ {
285
+ "epoch": 24.0,
286
+ "learning_rate": 2.2222222222222223e-05,
287
+ "loss": 0.5913,
288
+ "step": 120
289
+ },
290
+ {
291
+ "epoch": 24.0,
292
+ "eval_accuracy": 0.7818181818181819,
293
+ "eval_loss": 0.5094789862632751,
294
+ "eval_runtime": 0.6677,
295
+ "eval_samples_per_second": 164.747,
296
+ "eval_steps_per_second": 5.991,
297
+ "step": 120
298
+ },
299
+ {
300
+ "epoch": 25.0,
301
+ "eval_accuracy": 0.7909090909090909,
302
+ "eval_loss": 0.5140318870544434,
303
+ "eval_runtime": 0.6572,
304
+ "eval_samples_per_second": 167.374,
305
+ "eval_steps_per_second": 6.086,
306
+ "step": 125
307
+ },
308
+ {
309
+ "epoch": 26.0,
310
+ "learning_rate": 1.9444444444444445e-05,
311
+ "loss": 0.5462,
312
+ "step": 130
313
+ },
314
+ {
315
+ "epoch": 26.0,
316
+ "eval_accuracy": 0.7636363636363637,
317
+ "eval_loss": 0.5167139768600464,
318
+ "eval_runtime": 0.7442,
319
+ "eval_samples_per_second": 147.801,
320
+ "eval_steps_per_second": 5.375,
321
+ "step": 130
322
+ },
323
+ {
324
+ "epoch": 27.0,
325
+ "eval_accuracy": 0.7909090909090909,
326
+ "eval_loss": 0.49426034092903137,
327
+ "eval_runtime": 0.6102,
328
+ "eval_samples_per_second": 180.278,
329
+ "eval_steps_per_second": 6.556,
330
+ "step": 135
331
+ },
332
+ {
333
+ "epoch": 28.0,
334
+ "learning_rate": 1.6666666666666667e-05,
335
+ "loss": 0.5538,
336
+ "step": 140
337
+ },
338
+ {
339
+ "epoch": 28.0,
340
+ "eval_accuracy": 0.7636363636363637,
341
+ "eval_loss": 0.4843919575214386,
342
+ "eval_runtime": 0.7542,
343
+ "eval_samples_per_second": 145.854,
344
+ "eval_steps_per_second": 5.304,
345
+ "step": 140
346
+ },
347
+ {
348
+ "epoch": 29.0,
349
+ "eval_accuracy": 0.7727272727272727,
350
+ "eval_loss": 0.4821490943431854,
351
+ "eval_runtime": 0.6238,
352
+ "eval_samples_per_second": 176.347,
353
+ "eval_steps_per_second": 6.413,
354
+ "step": 145
355
+ },
356
+ {
357
+ "epoch": 30.0,
358
+ "learning_rate": 1.388888888888889e-05,
359
+ "loss": 0.5497,
360
+ "step": 150
361
+ },
362
+ {
363
+ "epoch": 30.0,
364
+ "eval_accuracy": 0.7727272727272727,
365
+ "eval_loss": 0.49517491459846497,
366
+ "eval_runtime": 0.6867,
367
+ "eval_samples_per_second": 160.188,
368
+ "eval_steps_per_second": 5.825,
369
+ "step": 150
370
+ },
371
+ {
372
+ "epoch": 31.0,
373
+ "eval_accuracy": 0.7818181818181819,
374
+ "eval_loss": 0.499459445476532,
375
+ "eval_runtime": 0.6542,
376
+ "eval_samples_per_second": 168.144,
377
+ "eval_steps_per_second": 6.114,
378
+ "step": 155
379
+ },
380
+ {
381
+ "epoch": 32.0,
382
+ "learning_rate": 1.1111111111111112e-05,
383
+ "loss": 0.4923,
384
+ "step": 160
385
+ },
386
+ {
387
+ "epoch": 32.0,
388
+ "eval_accuracy": 0.7727272727272727,
389
+ "eval_loss": 0.4910464286804199,
390
+ "eval_runtime": 0.6079,
391
+ "eval_samples_per_second": 180.941,
392
+ "eval_steps_per_second": 6.58,
393
+ "step": 160
394
+ },
395
+ {
396
+ "epoch": 33.0,
397
+ "eval_accuracy": 0.7818181818181819,
398
+ "eval_loss": 0.5028622150421143,
399
+ "eval_runtime": 0.6106,
400
+ "eval_samples_per_second": 180.138,
401
+ "eval_steps_per_second": 6.55,
402
+ "step": 165
403
+ },
404
+ {
405
+ "epoch": 34.0,
406
+ "learning_rate": 8.333333333333334e-06,
407
+ "loss": 0.5228,
408
+ "step": 170
409
+ },
410
+ {
411
+ "epoch": 34.0,
412
+ "eval_accuracy": 0.7818181818181819,
413
+ "eval_loss": 0.5083434581756592,
414
+ "eval_runtime": 0.6097,
415
+ "eval_samples_per_second": 180.422,
416
+ "eval_steps_per_second": 6.561,
417
+ "step": 170
418
+ },
419
+ {
420
+ "epoch": 35.0,
421
+ "eval_accuracy": 0.7909090909090909,
422
+ "eval_loss": 0.49842116236686707,
423
+ "eval_runtime": 0.6153,
424
+ "eval_samples_per_second": 178.786,
425
+ "eval_steps_per_second": 6.501,
426
+ "step": 175
427
+ },
428
+ {
429
+ "epoch": 36.0,
430
+ "learning_rate": 5.555555555555556e-06,
431
+ "loss": 0.4986,
432
+ "step": 180
433
+ },
434
+ {
435
+ "epoch": 36.0,
436
+ "eval_accuracy": 0.7909090909090909,
437
+ "eval_loss": 0.4914481043815613,
438
+ "eval_runtime": 0.6407,
439
+ "eval_samples_per_second": 171.693,
440
+ "eval_steps_per_second": 6.243,
441
+ "step": 180
442
+ },
443
+ {
444
+ "epoch": 37.0,
445
+ "eval_accuracy": 0.7909090909090909,
446
+ "eval_loss": 0.4926435649394989,
447
+ "eval_runtime": 0.6131,
448
+ "eval_samples_per_second": 179.402,
449
+ "eval_steps_per_second": 6.524,
450
+ "step": 185
451
+ },
452
+ {
453
+ "epoch": 38.0,
454
+ "learning_rate": 2.777777777777778e-06,
455
+ "loss": 0.5154,
456
+ "step": 190
457
+ },
458
+ {
459
+ "epoch": 38.0,
460
+ "eval_accuracy": 0.8,
461
+ "eval_loss": 0.49148377776145935,
462
+ "eval_runtime": 0.6154,
463
+ "eval_samples_per_second": 178.737,
464
+ "eval_steps_per_second": 6.5,
465
+ "step": 190
466
+ },
467
+ {
468
+ "epoch": 39.0,
469
+ "eval_accuracy": 0.8,
470
+ "eval_loss": 0.4885866641998291,
471
+ "eval_runtime": 0.636,
472
+ "eval_samples_per_second": 172.961,
473
+ "eval_steps_per_second": 6.289,
474
+ "step": 195
475
+ },
476
+ {
477
+ "epoch": 40.0,
478
+ "learning_rate": 0.0,
479
+ "loss": 0.5081,
480
+ "step": 200
481
+ },
482
+ {
483
+ "epoch": 40.0,
484
+ "eval_accuracy": 0.8,
485
+ "eval_loss": 0.48748189210891724,
486
+ "eval_runtime": 0.5972,
487
+ "eval_samples_per_second": 184.204,
488
+ "eval_steps_per_second": 6.698,
489
+ "step": 200
490
+ },
491
+ {
492
+ "epoch": 40.0,
493
+ "step": 200,
494
+ "total_flos": 8.108232849122918e+17,
495
+ "train_loss": 0.750064127445221,
496
+ "train_runtime": 356.9379,
497
+ "train_samples_per_second": 69.816,
498
+ "train_steps_per_second": 0.56
499
+ }
500
+ ],
501
+ "logging_steps": 10,
502
+ "max_steps": 200,
503
+ "num_input_tokens_seen": 0,
504
+ "num_train_epochs": 40,
505
+ "save_steps": 500,
506
+ "total_flos": 8.108232849122918e+17,
507
+ "train_batch_size": 32,
508
+ "trial_name": null,
509
+ "trial_params": null
510
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1da300db61b98a7ddf001c7458ae82ed135715be936217a23a82db8c397b1644
3
+ size 4792