--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-DMAE-da-colab results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7391304347826086 --- # swinv2-tiny-patch4-window8-256-DMAE-da-colab This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9394 - Accuracy: 0.7391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.3823 | 0.9565 | 11 | 1.4058 | 0.1957 | | 1.3366 | 2.0 | 23 | 1.4482 | 0.1957 | | 1.2352 | 2.9565 | 34 | 1.2309 | 0.4565 | | 1.1374 | 4.0 | 46 | 1.1031 | 0.6087 | | 1.0344 | 4.9565 | 57 | 1.0230 | 0.5870 | | 0.8772 | 6.0 | 69 | 0.9115 | 0.6522 | | 0.7321 | 6.9565 | 80 | 0.8858 | 0.6522 | | 0.6319 | 8.0 | 92 | 0.8665 | 0.6522 | | 0.6438 | 8.9565 | 103 | 0.7738 | 0.7174 | | 0.4714 | 10.0 | 115 | 0.8492 | 0.6304 | | 0.433 | 10.9565 | 126 | 0.8386 | 0.6957 | | 0.4793 | 12.0 | 138 | 0.9394 | 0.7391 | | 0.4769 | 12.9565 | 149 | 0.9471 | 0.6522 | | 0.3872 | 14.0 | 161 | 1.1526 | 0.6087 | | 0.3906 | 14.9565 | 172 | 1.0575 | 0.6522 | | 0.3798 | 16.0 | 184 | 1.0593 | 0.6957 | | 0.3377 | 16.9565 | 195 | 1.0783 | 0.6087 | | 0.3919 | 18.0 | 207 | 1.1067 | 0.6522 | | 0.3631 | 18.9565 | 218 | 1.1018 | 0.6739 | | 0.2762 | 20.0 | 230 | 1.1479 | 0.6522 | | 0.2935 | 20.9565 | 241 | 1.1055 | 0.6957 | | 0.3029 | 22.0 | 253 | 1.1203 | 0.6739 | | 0.2857 | 22.9565 | 264 | 1.2820 | 0.6304 | | 0.2603 | 24.0 | 276 | 1.2550 | 0.6304 | | 0.2162 | 24.9565 | 287 | 1.1655 | 0.6739 | | 0.2465 | 26.0 | 299 | 1.2511 | 0.6739 | | 0.2238 | 26.9565 | 310 | 1.3461 | 0.6304 | | 0.2271 | 28.0 | 322 | 1.3472 | 0.6304 | | 0.2694 | 28.9565 | 333 | 1.4501 | 0.6304 | | 0.1903 | 30.0 | 345 | 1.4629 | 0.6304 | | 0.2054 | 30.9565 | 356 | 1.4672 | 0.6304 | | 0.199 | 32.0 | 368 | 1.4725 | 0.6304 | | 0.2034 | 32.9565 | 379 | 1.4507 | 0.6522 | | 0.2048 | 34.0 | 391 | 1.4330 | 0.6304 | | 0.1767 | 34.9565 | 402 | 1.4638 | 0.6304 | | 0.1799 | 36.0 | 414 | 1.4232 | 0.6304 | | 0.1903 | 36.9565 | 425 | 1.4508 | 0.6304 | | 0.1864 | 38.0 | 437 | 1.4460 | 0.6304 | | 0.1818 | 38.2609 | 440 | 1.4456 | 0.6304 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3