Rename README.md to 微调llama3.md
Browse files- README.md +0 -3
- 微调llama3.md +294 -0
README.md
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
微调llama3.md
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
```python
|
5 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
6 |
+
```
|
7 |
+
|
8 |
+
```python
|
9 |
+
!pip install --upgrade pip
|
10 |
+
```
|
11 |
+
|
12 |
+
```python
|
13 |
+
!pip install --no-deps "xformers<0.0.26" "trl<0.9.0" peft accelerate bitsandbytes
|
14 |
+
```
|
15 |
+
|
16 |
+
```python
|
17 |
+
from unsloth import FastLanguageModel
|
18 |
+
import torch
|
19 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
20 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
21 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
22 |
+
|
23 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
24 |
+
fourbit_models = [
|
25 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
|
26 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
27 |
+
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
|
28 |
+
"unsloth/llama-3-8b-Instruct-bnb-4bit",
|
29 |
+
"unsloth/llama-3-70b-bnb-4bit",
|
30 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
|
31 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
32 |
+
"unsloth/mistral-7b-bnb-4bit",
|
33 |
+
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
|
34 |
+
] # More models at https://huggingface.co/unsloth
|
35 |
+
|
36 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
37 |
+
model_name = "unsloth/llama-3-8b-bnb-4bit",
|
38 |
+
max_seq_length = max_seq_length,
|
39 |
+
dtype = dtype,
|
40 |
+
load_in_4bit = load_in_4bit,
|
41 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
42 |
+
)
|
43 |
+
```
|
44 |
+
|
45 |
+
```python
|
46 |
+
# ========================================================
|
47 |
+
# Test before training
|
48 |
+
# ========================================================
|
49 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
50 |
+
|
51 |
+
### Instruction:
|
52 |
+
{}
|
53 |
+
|
54 |
+
### Input:
|
55 |
+
{}
|
56 |
+
|
57 |
+
### Response:
|
58 |
+
{}"""
|
59 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
60 |
+
inputs = tokenizer(
|
61 |
+
[
|
62 |
+
alpaca_prompt.format(
|
63 |
+
"请把现代汉语翻译成古文", # instruction
|
64 |
+
"其品行廉正,所以至死也不放松对自己的要求。", # input
|
65 |
+
"", # output - leave this blank for generation!
|
66 |
+
)
|
67 |
+
], return_tensors = "pt").to("cuda")
|
68 |
+
|
69 |
+
from transformers import TextStreamer
|
70 |
+
text_streamer = TextStreamer(tokenizer)
|
71 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
72 |
+
```
|
73 |
+
|
74 |
+
```python
|
75 |
+
model = FastLanguageModel.get_peft_model(
|
76 |
+
model,
|
77 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
78 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
79 |
+
"gate_proj", "up_proj", "down_proj",],
|
80 |
+
lora_alpha = 16,
|
81 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
82 |
+
bias = "none", # Supports any, but = "none" is optimized
|
83 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
84 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
85 |
+
random_state = 3407,
|
86 |
+
use_rslora = False, # We support rank stabilized LoRA
|
87 |
+
loftq_config = None, # And LoftQ
|
88 |
+
)
|
89 |
+
```
|
90 |
+
|
91 |
+
```python
|
92 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
93 |
+
|
94 |
+
### Instruction:
|
95 |
+
{}
|
96 |
+
|
97 |
+
### Input:
|
98 |
+
{}
|
99 |
+
|
100 |
+
### Response:
|
101 |
+
{}"""
|
102 |
+
|
103 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
104 |
+
def formatting_prompts_func(examples):
|
105 |
+
instructions = examples["instruction"]
|
106 |
+
inputs = examples["input"]
|
107 |
+
outputs = examples["output"]
|
108 |
+
texts = []
|
109 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
110 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
111 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
112 |
+
texts.append(text)
|
113 |
+
return { "text" : texts, }
|
114 |
+
pass
|
115 |
+
|
116 |
+
from datasets import load_dataset
|
117 |
+
dataset = load_dataset("Asuncom/shiji-qishiliezhuan", split = "train")
|
118 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
119 |
+
```
|
120 |
+
|
121 |
+
```python
|
122 |
+
from trl import SFTTrainer
|
123 |
+
from transformers import TrainingArguments
|
124 |
+
from unsloth import is_bfloat16_supported
|
125 |
+
|
126 |
+
trainer = SFTTrainer(
|
127 |
+
model = model,
|
128 |
+
tokenizer = tokenizer,
|
129 |
+
train_dataset = dataset,
|
130 |
+
dataset_text_field = "text",
|
131 |
+
max_seq_length = max_seq_length,
|
132 |
+
dataset_num_proc = 2,
|
133 |
+
packing = False, # Can make training 5x faster for short sequences.
|
134 |
+
args = TrainingArguments(
|
135 |
+
per_device_train_batch_size = 2,
|
136 |
+
gradient_accumulation_steps = 4,
|
137 |
+
warmup_steps = 5,
|
138 |
+
# num_train_epochs = 1, # Set this for 1 full training run.
|
139 |
+
max_steps = 100,
|
140 |
+
learning_rate = 2e-4,
|
141 |
+
fp16 = not is_bfloat16_supported(),
|
142 |
+
bf16 = is_bfloat16_supported(),
|
143 |
+
logging_steps = 1,
|
144 |
+
optim = "adamw_8bit",
|
145 |
+
weight_decay = 0.01,
|
146 |
+
lr_scheduler_type = "linear",
|
147 |
+
seed = 3407,
|
148 |
+
output_dir = "outputs",
|
149 |
+
),
|
150 |
+
)
|
151 |
+
```
|
152 |
+
|
153 |
+
```python
|
154 |
+
#@title Show current memory stats
|
155 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
156 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
157 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
158 |
+
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
159 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
160 |
+
```
|
161 |
+
|
162 |
+
```python
|
163 |
+
import wandb
|
164 |
+
|
165 |
+
# 初始化一个离线模式的W&B运行
|
166 |
+
wandb.init(mode="offline", project="asuncom", entity="asuncom")
|
167 |
+
```
|
168 |
+
|
169 |
+
```python
|
170 |
+
trainer_stats = trainer.train()
|
171 |
+
```
|
172 |
+
|
173 |
+
```python
|
174 |
+
#@title Show final memory and time stats
|
175 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
176 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
177 |
+
used_percentage = round(used_memory /max_memory*100, 3)
|
178 |
+
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
179 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
180 |
+
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
181 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
182 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
183 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
184 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
185 |
+
```
|
186 |
+
|
187 |
+
```python
|
188 |
+
# alpaca_prompt = Copied from above
|
189 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
190 |
+
inputs = tokenizer(
|
191 |
+
[
|
192 |
+
alpaca_prompt.format(
|
193 |
+
"请把现代汉语翻译成古文", # instruction
|
194 |
+
"其品行廉正,所以至死也不放松对自己的要求。", # input
|
195 |
+
"", # output - leave this blank for generation!
|
196 |
+
)
|
197 |
+
], return_tensors = "pt").to("cuda")
|
198 |
+
|
199 |
+
from transformers import TextStreamer
|
200 |
+
text_streamer = TextStreamer(tokenizer)
|
201 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
202 |
+
```
|
203 |
+
|
204 |
+
```python
|
205 |
+
model.save_pretrained("lora_model") # Local saving
|
206 |
+
tokenizer.save_pretrained("lora_model")
|
207 |
+
model.push_to_hub("Asuncom/Llama-3-8B-bnb-4bit-shiji", token = "hf_huggingface密钥XqWUItzvbAkNeKb") # Online saving
|
208 |
+
tokenizer.push_to_hub("Asuncom/Llama-3-8B-bnb-4bit-shiji", token = "hf_gUYYWvhuggingface密钥zvbAkNeKb") # Online saving
|
209 |
+
```
|
210 |
+
|
211 |
+
```python
|
212 |
+
if False:
|
213 |
+
from unsloth import FastLanguageModel
|
214 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
215 |
+
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
216 |
+
max_seq_length = max_seq_length,
|
217 |
+
dtype = dtype,
|
218 |
+
load_in_4bit = load_in_4bit,
|
219 |
+
)
|
220 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
221 |
+
|
222 |
+
# alpaca_prompt = You MUST copy from above!
|
223 |
+
|
224 |
+
inputs = tokenizer(
|
225 |
+
[
|
226 |
+
alpaca_prompt.format(
|
227 |
+
"What is a famous tall tower in Paris?", # instruction
|
228 |
+
"", # input
|
229 |
+
"", # output - leave this blank for generation!
|
230 |
+
)
|
231 |
+
], return_tensors = "pt").to("cuda")
|
232 |
+
|
233 |
+
from transformers import TextStreamer
|
234 |
+
text_streamer = TextStreamer(tokenizer)
|
235 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
236 |
+
```
|
237 |
+
|
238 |
+
```python
|
239 |
+
# Merge to 16bit
|
240 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
|
241 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, save_method = "merged_16bit", token = "hf_huggingface密钥XqWUItzvbAkNeKb")
|
242 |
+
|
243 |
+
# Merge to 4bit
|
244 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
|
245 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, save_method = "merged_4bit", token = "hf_gUYYWvhuggingface密钥zvbAkNeKb")
|
246 |
+
|
247 |
+
# Just LoRA adapters
|
248 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
249 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, save_method = "lora", token = "hf_gUYYWvvzxjWLhuggingface密钥eKb")
|
250 |
+
```
|
251 |
+
|
252 |
+
```python
|
253 |
+
# Save to 8bit Q8_0
|
254 |
+
if False: model.save_pretrained_gguf("model", tokenizer,)
|
255 |
+
# Remember to go to https://huggingface.co/settings/tokens for a token!
|
256 |
+
# And change hf to your username!
|
257 |
+
if False: model.push_to_hub_gguf("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, token = "")
|
258 |
+
|
259 |
+
# Save to 16bit GGUF
|
260 |
+
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
|
261 |
+
if False: model.push_to_hub_gguf("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, quantization_method = "f16", token = "")
|
262 |
+
|
263 |
+
# Save to q4_k_m GGUF
|
264 |
+
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
|
265 |
+
if True: model.push_to_hub_gguf("Asuncom/Llama-3-8B-bnb-4bit-shiji", tokenizer, quantization_method = "q4_k_m", token = "hf_xxxxx")
|
266 |
+
|
267 |
+
# Save to multiple GGUF options - much faster if you want multiple!
|
268 |
+
if False:
|
269 |
+
model.push_to_hub_gguf(
|
270 |
+
"Asuncom/Llama-3-8B-bnb-4bit-shiji", # Change hf to your username!
|
271 |
+
tokenizer,
|
272 |
+
quantization_method = ["q4_k_m", "q8_0", "q5_k_m",],
|
273 |
+
token = "hf_huggingface密钥XqWUItzvbAkNeKb", # Get a token at https://huggingface.co/settings/tokens
|
274 |
+
)
|
275 |
+
```
|
276 |
+
|
277 |
+
```python
|
278 |
+
model.push_to_hub_gguf(
|
279 |
+
"Asuncom/Llama-3-8B-bnb-4bit-shiji", # Change hf to your username!
|
280 |
+
tokenizer,
|
281 |
+
quantization_method = ["q4_k_m", "q8_0", "q5_k_m",],
|
282 |
+
token = "hf_huggingface密钥XqWUItzvbAkNeKb", # Get a token at https://huggingface.co/settings/tokens
|
283 |
+
)
|
284 |
+
```
|
285 |
+
|
286 |
+
```
|
287 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3-8B-bnb-4bit-shiji
|
288 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
289 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3-8B-bnb-4bit-shiji
|
290 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
291 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3-8B-bnb-4bit-shiji
|
292 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
293 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3-8B-bnb-4bit-shiji
|
294 |
+
```
|