Askinkaty commited on
Commit
c5c4b86
·
verified ·
1 Parent(s): 04b9dde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -10
README.md CHANGED
@@ -52,19 +52,25 @@ Model for predicting relations between entities in the financial documents.
52
  ```python
53
  finetune_name = 'Askinkaty/llama-finance-relations'
54
 
 
55
  finetined_model = AutoPeftModelForCausalLM.from_pretrained(
56
  pretrained_model_name_or_path=finetune_name,
57
  torch_dtype=torch.float16,
58
  low_cpu_mem_usage=True,
 
59
  )
60
 
 
 
 
 
61
 
62
- base_model = "meta-llama/Llama-3.2-1B-Instruct"
63
  tokenizer = AutoTokenizer.from_pretrained(model_name)
64
- base_model.config.pad_token_id = base_model.config.eos_token_id
65
 
 
 
66
 
67
- pipeline = pipeline('text-generation', model=base_model, tokenizer=tokenizer)
68
  pipeline.model = model.to(device)
69
  ```
70
 
@@ -141,18 +147,40 @@ LORA parameters:
141
  Test set sampled from Samples from [ReFinD dataset](https://refind-re.github.io/).
142
 
143
 
144
-
145
-
146
-
147
  #### Metrics
148
 
149
- Accuracy. Other metrics: work in progress.
150
-
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
- ### Results
154
 
155
- Accuracy: 0.71
156
 
157
 
158
  - PEFT 0.14.0
 
52
  ```python
53
  finetune_name = 'Askinkaty/llama-finance-relations'
54
 
55
+
56
  finetined_model = AutoPeftModelForCausalLM.from_pretrained(
57
  pretrained_model_name_or_path=finetune_name,
58
  torch_dtype=torch.float16,
59
  low_cpu_mem_usage=True,
60
+ device_map="auto",
61
  )
62
 
63
+ base_model_name = "meta-llama/Llama-3.2-1B-Instruct"
64
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name,
65
+ torch_dtype=torch.float16,
66
+ low_cpu_mem_usage=True)
67
 
 
68
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
69
 
70
+ base_model.config.pad_token_id = base_model.config.eos_token_id
71
+ model.config.pad_token_id = model.config.eos_token_id
72
 
73
+ pipeline = pipeline('text-generation', model=base_model, tokenizer=tokenizer, max_length=1024, device=device)
74
  pipeline.model = model.to(device)
75
  ```
76
 
 
147
  Test set sampled from Samples from [ReFinD dataset](https://refind-re.github.io/).
148
 
149
 
 
 
 
150
  #### Metrics
151
 
 
 
152
 
153
+ ```
154
+ Overall Performance:
155
+ Precision: 0.77
156
+ Recall: 0.69
157
+ F1 Score: 0.71
158
+
159
+ Classification Report:
160
+ precision recall f1-score support
161
+
162
+ no_relation 0.00 0.00 0.00 0
163
+ title 0.00 0.00 0.00 0
164
+ operations_in 0.65 0.66 0.66 100
165
+ employee_of 0.00 0.00 0.00 0
166
+ agreement_with 0.58 0.88 0.70 100
167
+ formed_on 0.00 0.00 0.00 0
168
+ member_of 0.99 0.96 0.97 96
169
+ subsidiary_of 0.00 0.00 0.00 0
170
+ shares_of 0.00 0.00 0.00 0
171
+ revenue_of 0.60 0.27 0.38 95
172
+ loss_of 0.64 0.37 0.47 100
173
+ headquartered_in 0.99 0.73 0.84 100
174
+ acquired_on 0.00 0.00 0.00 0
175
+ founder_of 0.74 0.77 0.76 83
176
+ formed_in 0.96 0.91 0.93 100
177
+
178
+ accuracy 0.69 774
179
+ macro avg 0.41 0.37 0.38 774
180
+ weighted avg 0.77 0.69 0.71 774
181
 
182
+ ```
183
 
 
184
 
185
 
186
  - PEFT 0.14.0