File size: 2,332 Bytes
d21b535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_31
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_31
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0141
- Accuracy: 0.6667
- F1: 0.6537
- Recall: 0.6667
- Precision: 0.75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4624
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 1.7482 | 0.0314 | 145 | 1.7665 | 0.2 | 0.1133 | 0.2 | 0.0794 |
| 1.3969 | 1.0314 | 290 | 1.5064 | 0.6 | 0.5700 | 0.6 | 0.6422 |
| 1.0075 | 2.0314 | 435 | 1.2230 | 0.5333 | 0.5467 | 0.5333 | 0.5778 |
| 0.805 | 3.0314 | 580 | 0.9838 | 0.6667 | 0.6537 | 0.6667 | 0.75 |
| 0.9045 | 4.0314 | 725 | 1.0228 | 0.6 | 0.5676 | 0.6 | 0.5444 |
| 0.4916 | 5.0314 | 870 | 1.0251 | 0.6667 | 0.6448 | 0.6667 | 0.7056 |
| 0.2283 | 6.0314 | 1015 | 1.0003 | 0.6667 | 0.6537 | 0.6667 | 0.75 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|