File size: 16,529 Bytes
69ac1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: pretrained-hist-l2_tenKQ_finetune-itemseg_v12-tssp-m0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pretrained-hist-l2_tenKQ_finetune-itemseg_v12-tssp-m0

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3248
- Accuracy: 0.9294
- Macro F1: 0.8204

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3365
- training_steps: 67312

### Training results

| Training Loss | Epoch    | Step  | Validation Loss | Accuracy | Macro F1 |
|:-------------:|:--------:|:-----:|:---------------:|:--------:|:--------:|
| 18.3081       | 2.0010   | 201   | 92.0443         | 0.1413   | 0.0501   |
| 6.328         | 5.0009   | 402   | 133.2266        | 0.5761   | 0.1625   |
| 4.838         | 8.0009   | 603   | 145.9778        | 0.6359   | 0.1990   |
| 3.6763        | 11.0008  | 804   | 119.4216        | 0.6674   | 0.2212   |
| 2.7128        | 14.0008  | 1005  | 51.8430         | 0.7070   | 0.2573   |
| 2.3342        | 17.0007  | 1206  | 27.4778         | 0.7250   | 0.2894   |
| 1.8815        | 20.0007  | 1407  | 19.0125         | 0.7462   | 0.3373   |
| 1.65          | 23.0007  | 1608  | 13.0926         | 0.7608   | 0.3662   |
| 1.4902        | 26.0006  | 1809  | 8.4115          | 0.7567   | 0.4072   |
| 1.2953        | 29.0006  | 2010  | 7.8777          | 0.7823   | 0.4407   |
| 1.1867        | 32.0005  | 2211  | 6.7955          | 0.7812   | 0.4557   |
| 1.0704        | 35.0005  | 2412  | 5.3807          | 0.7841   | 0.4912   |
| 0.9792        | 38.0004  | 2613  | 4.6642          | 0.8160   | 0.5335   |
| 0.8649        | 41.0004  | 2814  | 4.1745          | 0.8178   | 0.5658   |
| 0.7768        | 44.0003  | 3015  | 3.8817          | 0.8240   | 0.5736   |
| 0.7169        | 47.0003  | 3216  | 4.2183          | 0.8330   | 0.5971   |
| 0.6459        | 50.0003  | 3417  | 3.4359          | 0.8295   | 0.6069   |
| 0.5664        | 53.0002  | 3618  | 3.3957          | 0.8538   | 0.6294   |
| 0.516         | 56.0002  | 3819  | 3.8816          | 0.8540   | 0.6424   |
| 0.4745        | 59.0001  | 4020  | 3.9219          | 0.8692   | 0.6628   |
| 0.4204        | 62.0001  | 4221  | 3.8606          | 0.8709   | 0.6657   |
| 0.3926        | 65.0000  | 4422  | 4.2133          | 0.8666   | 0.6703   |
| 0.3569        | 67.0010  | 4623  | 4.5565          | 0.8644   | 0.6744   |
| 0.3342        | 70.0010  | 4824  | 4.9640          | 0.8809   | 0.6919   |
| 0.303         | 73.0009  | 5025  | 5.1881          | 0.8813   | 0.7000   |
| 0.2858        | 76.0009  | 5226  | 5.0722          | 0.8878   | 0.7098   |
| 0.2741        | 79.0008  | 5427  | 6.1618          | 0.8920   | 0.7198   |
| 0.2592        | 82.0008  | 5628  | 6.5562          | 0.8897   | 0.7178   |
| 0.2432        | 85.0007  | 5829  | 7.2766          | 0.8939   | 0.7291   |
| 0.2265        | 88.0007  | 6030  | 8.0923          | 0.8949   | 0.7300   |
| 0.2201        | 91.0006  | 6231  | 7.3557          | 0.8984   | 0.7339   |
| 0.2093        | 94.0006  | 6432  | 7.3704          | 0.8954   | 0.7321   |
| 0.1983        | 97.0005  | 6633  | 8.7920          | 0.8962   | 0.7394   |
| 0.195         | 100.0005 | 6834  | 8.1665          | 0.8975   | 0.7421   |
| 0.1828        | 103.0005 | 7035  | 7.8452          | 0.9033   | 0.7492   |
| 0.18          | 106.0004 | 7236  | 7.6154          | 0.9012   | 0.7537   |
| 0.1723        | 109.0004 | 7437  | 6.4922          | 0.9060   | 0.7585   |
| 0.1694        | 112.0003 | 7638  | 7.5438          | 0.9040   | 0.7616   |
| 0.1672        | 115.0003 | 7839  | 6.9874          | 0.9053   | 0.7650   |
| 0.1552        | 118.0002 | 8040  | 7.1907          | 0.9063   | 0.7634   |
| 0.1588        | 121.0002 | 8241  | 7.0263          | 0.9086   | 0.7636   |
| 0.1509        | 124.0001 | 8442  | 6.8458          | 0.9070   | 0.7644   |
| 0.1514        | 127.0001 | 8643  | 5.4099          | 0.9089   | 0.7701   |
| 0.1457        | 130.0001 | 8844  | 5.8632          | 0.9107   | 0.7727   |
| 0.1425        | 133.0000 | 9045  | 5.6742          | 0.9111   | 0.7753   |
| 0.1415        | 135.0010 | 9246  | 5.7430          | 0.9117   | 0.7761   |
| 0.1436        | 138.0009 | 9447  | 5.0272          | 0.9103   | 0.7734   |
| 0.1434        | 141.0009 | 9648  | 4.4936          | 0.9096   | 0.7746   |
| 0.1377        | 144.0008 | 9849  | 5.2322          | 0.9078   | 0.7769   |
| 0.1383        | 147.0008 | 10050 | 4.7013          | 0.9149   | 0.7835   |
| 0.133         | 150.0008 | 10251 | 4.6257          | 0.9142   | 0.7836   |
| 0.1349        | 153.0007 | 10452 | 3.9570          | 0.9153   | 0.7830   |
| 0.1273        | 156.0007 | 10653 | 3.6838          | 0.9142   | 0.7806   |
| 0.1255        | 159.0006 | 10854 | 3.6121          | 0.9144   | 0.7836   |
| 0.1247        | 162.0006 | 11055 | 3.2919          | 0.9160   | 0.7879   |
| 0.129         | 165.0005 | 11256 | 3.1283          | 0.9132   | 0.7823   |
| 0.1215        | 168.0005 | 11457 | 3.2925          | 0.9152   | 0.7854   |
| 0.1216        | 171.0004 | 11658 | 3.1251          | 0.9168   | 0.7869   |
| 0.1205        | 174.0004 | 11859 | 3.1548          | 0.9182   | 0.7893   |
| 0.1231        | 177.0004 | 12060 | 2.7044          | 0.9122   | 0.7835   |
| 0.1308        | 180.0003 | 12261 | 2.7894          | 0.9158   | 0.7891   |
| 0.1254        | 183.0003 | 12462 | 2.6146          | 0.9158   | 0.7864   |
| 0.1194        | 186.0002 | 12663 | 2.9000          | 0.9179   | 0.7899   |
| 0.1171        | 189.0002 | 12864 | 2.7811          | 0.9157   | 0.7899   |
| 0.1159        | 192.0001 | 13065 | 2.6063          | 0.9180   | 0.7926   |
| 0.1164        | 195.0001 | 13266 | 2.7002          | 0.9180   | 0.7915   |
| 0.1148        | 198.0000 | 13467 | 2.5541          | 0.9192   | 0.7946   |
| 0.1172        | 200.0010 | 13668 | 2.3960          | 0.9173   | 0.7894   |
| 0.1252        | 203.0010 | 13869 | 2.2429          | 0.9164   | 0.7887   |
| 0.1122        | 206.0009 | 14070 | 2.1204          | 0.9187   | 0.7935   |
| 0.115         | 209.0009 | 14271 | 2.3396          | 0.9190   | 0.7961   |
| 0.108         | 212.0008 | 14472 | 2.0145          | 0.9198   | 0.7957   |
| 0.1081        | 215.0008 | 14673 | 2.1137          | 0.9202   | 0.7969   |
| 0.1093        | 218.0007 | 14874 | 2.0863          | 0.9205   | 0.7972   |
| 0.1073        | 221.0007 | 15075 | 1.8909          | 0.9196   | 0.7946   |
| 0.11          | 224.0007 | 15276 | 1.8784          | 0.9212   | 0.7977   |
| 0.1087        | 227.0006 | 15477 | 1.8960          | 0.9224   | 0.8016   |
| 0.1065        | 230.0006 | 15678 | 1.8995          | 0.9186   | 0.7946   |
| 0.1065        | 233.0005 | 15879 | 1.8899          | 0.9200   | 0.7968   |
| 0.1108        | 236.0005 | 16080 | 1.8815          | 0.9205   | 0.7982   |
| 0.1064        | 239.0004 | 16281 | 1.8124          | 0.9220   | 0.7989   |
| 0.1038        | 242.0004 | 16482 | 1.8478          | 0.9235   | 0.8016   |
| 0.1047        | 245.0003 | 16683 | 1.8597          | 0.9218   | 0.8015   |
| 0.1042        | 248.0003 | 16884 | 1.8254          | 0.9221   | 0.8011   |
| 0.1064        | 251.0003 | 17085 | 1.7683          | 0.9222   | 0.8005   |
| 0.1007        | 254.0002 | 17286 | 1.7810          | 0.9216   | 0.8044   |
| 0.1009        | 257.0002 | 17487 | 1.8142          | 0.9225   | 0.8025   |
| 0.1011        | 260.0001 | 17688 | 1.7981          | 0.9203   | 0.7992   |
| 0.0963        | 263.0001 | 17889 | 1.6290          | 0.9222   | 0.8056   |
| 0.1089        | 266.0000 | 18090 | 1.6993          | 0.9214   | 0.8007   |
| 0.1119        | 268.0010 | 18291 | 1.6256          | 0.9214   | 0.8022   |
| 0.1008        | 271.0010 | 18492 | 1.7093          | 0.9232   | 0.8026   |
| 0.0963        | 274.0009 | 18693 | 1.6050          | 0.9234   | 0.8048   |
| 0.0997        | 277.0009 | 18894 | 1.5403          | 0.9237   | 0.8080   |
| 0.0978        | 280.0008 | 19095 | 1.6604          | 0.9229   | 0.8034   |
| 0.0964        | 283.0008 | 19296 | 1.5679          | 0.9232   | 0.8071   |
| 0.0963        | 286.0007 | 19497 | 1.5459          | 0.9230   | 0.8048   |
| 0.0973        | 289.0007 | 19698 | 1.4886          | 0.9196   | 0.8025   |
| 0.0996        | 292.0006 | 19899 | 1.4917          | 0.9208   | 0.8024   |
| 0.0963        | 295.0006 | 20100 | 1.3997          | 0.9225   | 0.8051   |
| 0.095         | 298.0005 | 20301 | 1.4833          | 0.9228   | 0.8050   |
| 0.0955        | 301.0005 | 20502 | 1.5128          | 0.9217   | 0.8033   |
| 0.0969        | 304.0005 | 20703 | 1.4938          | 0.9208   | 0.8025   |
| 0.1025        | 307.0004 | 20904 | 1.5228          | 0.9236   | 0.8031   |
| 0.096         | 310.0004 | 21105 | 1.5700          | 0.9241   | 0.8084   |
| 0.0981        | 313.0003 | 21306 | 1.4501          | 0.9202   | 0.8003   |
| 0.0968        | 316.0003 | 21507 | 1.5587          | 0.9238   | 0.8046   |
| 0.0958        | 319.0002 | 21708 | 1.4369          | 0.9254   | 0.8081   |
| 0.091         | 322.0002 | 21909 | 1.4935          | 0.9251   | 0.8074   |
| 0.0945        | 325.0001 | 22110 | 1.4459          | 0.9269   | 0.8120   |
| 0.0923        | 328.0001 | 22311 | 1.3652          | 0.9259   | 0.8109   |
| 0.0916        | 331.0001 | 22512 | 1.5116          | 0.9260   | 0.8099   |
| 0.091         | 334.0000 | 22713 | 1.4167          | 0.9245   | 0.8084   |
| 0.0924        | 336.0010 | 22914 | 1.4038          | 0.9258   | 0.8095   |
| 0.0917        | 339.0009 | 23115 | 1.4282          | 0.9258   | 0.8103   |
| 0.0892        | 342.0009 | 23316 | 1.4295          | 0.9267   | 0.8108   |
| 0.0898        | 345.0008 | 23517 | 1.4366          | 0.9257   | 0.8137   |
| 0.0916        | 348.0008 | 23718 | 1.4560          | 0.9234   | 0.8075   |
| 0.088         | 351.0008 | 23919 | 1.3876          | 0.9258   | 0.8118   |
| 0.0896        | 354.0007 | 24120 | 1.5172          | 0.9227   | 0.8065   |
| 0.088         | 357.0007 | 24321 | 1.5016          | 0.9261   | 0.8097   |
| 0.0874        | 360.0006 | 24522 | 1.4182          | 0.9254   | 0.8089   |
| 0.0918        | 363.0006 | 24723 | 1.4840          | 0.9241   | 0.8045   |
| 0.09          | 366.0005 | 24924 | 1.5154          | 0.9233   | 0.8081   |
| 0.0888        | 369.0005 | 25125 | 1.3604          | 0.9277   | 0.8143   |
| 0.0866        | 372.0004 | 25326 | 1.4135          | 0.9240   | 0.8081   |
| 0.089         | 375.0004 | 25527 | 1.4785          | 0.9260   | 0.8117   |
| 0.0928        | 378.0004 | 25728 | 1.3908          | 0.9256   | 0.8094   |
| 0.0927        | 381.0003 | 25929 | 1.4106          | 0.9246   | 0.8058   |
| 0.0877        | 384.0003 | 26130 | 1.3791          | 0.9263   | 0.8111   |
| 0.0859        | 387.0002 | 26331 | 1.4158          | 0.9256   | 0.8112   |
| 0.0878        | 390.0002 | 26532 | 1.3359          | 0.9256   | 0.8111   |
| 0.085         | 393.0001 | 26733 | 1.3835          | 0.9249   | 0.8096   |
| 0.0863        | 396.0001 | 26934 | 1.3753          | 0.9255   | 0.8109   |
| 0.0854        | 399.0000 | 27135 | 1.3575          | 0.9266   | 0.8108   |
| 0.0856        | 401.0010 | 27336 | 1.3802          | 0.9270   | 0.8122   |
| 0.0856        | 404.0010 | 27537 | 1.3584          | 0.9278   | 0.8138   |
| 0.0868        | 407.0009 | 27738 | 1.4511          | 0.9240   | 0.8079   |
| 0.0866        | 410.0009 | 27939 | 1.3532          | 0.9270   | 0.8125   |
| 0.0843        | 413.0008 | 28140 | 1.3818          | 0.9264   | 0.8134   |
| 0.086         | 416.0008 | 28341 | 1.3797          | 0.9262   | 0.8131   |
| 0.0849        | 419.0007 | 28542 | 1.3713          | 0.9267   | 0.8149   |
| 0.0831        | 422.0007 | 28743 | 1.4248          | 0.9260   | 0.8123   |
| 0.0843        | 425.0007 | 28944 | 1.3671          | 0.9272   | 0.8133   |
| 0.0838        | 428.0006 | 29145 | 1.5038          | 0.9260   | 0.8124   |
| 0.0839        | 431.0006 | 29346 | 1.4157          | 0.9272   | 0.8136   |
| 0.0827        | 434.0005 | 29547 | 1.3950          | 0.9269   | 0.8137   |
| 0.0832        | 437.0005 | 29748 | 1.3595          | 0.9267   | 0.8128   |
| 0.0867        | 440.0004 | 29949 | 1.2980          | 0.9243   | 0.8134   |
| 0.0846        | 443.0004 | 30150 | 1.4668          | 0.9279   | 0.8149   |
| 0.0853        | 446.0003 | 30351 | 1.3490          | 0.9259   | 0.8133   |
| 0.0849        | 449.0003 | 30552 | 1.4092          | 0.9275   | 0.8148   |
| 0.0856        | 452.0003 | 30753 | 1.3654          | 0.9246   | 0.8077   |
| 0.0838        | 455.0002 | 30954 | 1.4238          | 0.9269   | 0.8115   |
| 0.0809        | 458.0002 | 31155 | 1.3319          | 0.9273   | 0.8117   |
| 0.0826        | 461.0001 | 31356 | 1.4123          | 0.9276   | 0.8129   |
| 0.0815        | 464.0001 | 31557 | 1.3352          | 0.9275   | 0.8136   |
| 0.0804        | 467.0000 | 31758 | 1.3803          | 0.9280   | 0.8159   |
| 0.0797        | 469.0010 | 31959 | 1.3948          | 0.9272   | 0.8173   |
| 0.0806        | 472.0010 | 32160 | 1.3945          | 0.9261   | 0.8104   |
| 0.0804        | 475.0009 | 32361 | 1.3707          | 0.9284   | 0.8156   |
| 0.0808        | 478.0009 | 32562 | 1.4406          | 0.9268   | 0.8152   |
| 0.0792        | 481.0008 | 32763 | 1.4056          | 0.9267   | 0.8144   |
| 0.0788        | 484.0008 | 32964 | 1.4086          | 0.9269   | 0.8145   |
| 0.0805        | 487.0007 | 33165 | 1.3563          | 0.9276   | 0.8168   |
| 0.0804        | 490.0007 | 33366 | 1.3429          | 0.9284   | 0.8149   |
| 0.0798        | 493.0006 | 33567 | 1.4408          | 0.9270   | 0.8143   |
| 0.0791        | 496.0006 | 33768 | 1.4209          | 0.9274   | 0.8152   |
| 0.0823        | 499.0005 | 33969 | 1.4354          | 0.9271   | 0.8144   |
| 0.0811        | 502.0005 | 34170 | 1.3956          | 0.9265   | 0.8146   |
| 0.0978        | 505.0005 | 34371 | 1.4652          | 0.9256   | 0.8102   |
| 0.0894        | 508.0004 | 34572 | 1.3084          | 0.9237   | 0.8135   |
| 0.0817        | 511.0004 | 34773 | 1.3392          | 0.9272   | 0.8169   |
| 0.0793        | 514.0003 | 34974 | 1.3396          | 0.9294   | 0.8198   |
| 0.0781        | 517.0003 | 35175 | 1.2850          | 0.9289   | 0.8204   |
| 0.0787        | 520.0002 | 35376 | 1.3228          | 0.9294   | 0.8204   |
| 0.0778        | 523.0002 | 35577 | 1.3750          | 0.9289   | 0.8172   |
| 0.0772        | 526.0001 | 35778 | 1.4147          | 0.9274   | 0.8143   |
| 0.0777        | 529.0001 | 35979 | 1.3052          | 0.9278   | 0.8170   |
| 0.0783        | 532.0001 | 36180 | 1.2464          | 0.9286   | 0.8198   |
| 0.077         | 535.0000 | 36381 | 1.3571          | 0.9283   | 0.8184   |
| 0.0778        | 537.0010 | 36582 | 1.3503          | 0.9290   | 0.8184   |
| 0.0787        | 540.0009 | 36783 | 1.3391          | 0.9286   | 0.8184   |
| 0.077         | 543.0009 | 36984 | 1.4027          | 0.9292   | 0.8170   |
| 0.0779        | 546.0008 | 37185 | 1.3167          | 0.9281   | 0.8165   |
| 0.0781        | 549.0008 | 37386 | 1.3828          | 0.9284   | 0.8147   |
| 0.0781        | 552.0008 | 37587 | 1.3284          | 0.9287   | 0.8196   |
| 0.0765        | 555.0007 | 37788 | 1.4137          | 0.9286   | 0.8186   |
| 0.0778        | 558.0007 | 37989 | 1.4190          | 0.9286   | 0.8174   |
| 0.0747        | 561.0006 | 38190 | 1.3886          | 0.9289   | 0.8159   |
| 0.0768        | 564.0006 | 38391 | 1.3433          | 0.9291   | 0.8178   |
| 0.0765        | 567.0005 | 38592 | 1.4049          | 0.9289   | 0.8169   |
| 0.0781        | 570.0005 | 38793 | 1.4670          | 0.9276   | 0.8141   |
| 0.0776        | 573.0004 | 38994 | 1.5075          | 0.9280   | 0.8166   |
| 0.0753        | 576.0004 | 39195 | 1.3683          | 0.9280   | 0.8164   |
| 0.0756        | 579.0004 | 39396 | 1.3317          | 0.9281   | 0.8186   |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1