Rename README Kopie.md to README.md
Browse files- README Kopie.md +0 -139
- README.md +159 -0
README Kopie.md
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
# Personality Trait Predictor β AMIV NLP 2025
|
2 |
-
University of Antwerp
|
3 |
-
|
4 |
-
This project predicts **Big Five personality traits (OCEAN)** from English text using a combination of:
|
5 |
-
|
6 |
-
- DistilBERT embeddings
|
7 |
-
- LIWC-style psycholinguistic features
|
8 |
-
- An ensemble classifier (Random Forest, XGBoost, MLP, SVM)
|
9 |
-
|
10 |
-
The five traits predicted are:
|
11 |
-
- **Openness**
|
12 |
-
- **Conscientiousness**
|
13 |
-
- **Extraversion**
|
14 |
-
- **Agreeableness**
|
15 |
-
- **Emotional Stability**
|
16 |
-
|
17 |
-
Each trait is classified as:
|
18 |
-
- `low`
|
19 |
-
- `medium`
|
20 |
-
- `high`
|
21 |
-
|
22 |
-
---
|
23 |
-
|
24 |
-
## Features
|
25 |
-
|
26 |
-
- Accepts raw free-form text (e.g., job interview answers)
|
27 |
-
- Extracts both semantic (BERT) and psycholinguistic (LIWC) features
|
28 |
-
- Outputs all 5 personality traits using a custom-trained ensemble
|
29 |
-
- Can be used locally or deployed via Gradio (demo available)
|
30 |
-
|
31 |
-
---
|
32 |
-
|
33 |
-
## Quick Usage (Python)
|
34 |
-
|
35 |
-
```python
|
36 |
-
from personality_model import PersonalityClassifier
|
37 |
-
|
38 |
-
model = PersonalityClassifier()
|
39 |
-
|
40 |
-
text = "I love exploring new cultures and trying unusual foods. I often seek out unfamiliar ideas and perspectives."
|
41 |
-
|
42 |
-
result = model.predict_all_traits(text)
|
43 |
-
print(result)
|
44 |
-
```
|
45 |
-
|
46 |
-
Expected output:
|
47 |
-
|
48 |
-
```python
|
49 |
-
{
|
50 |
-
"Openness": "high",
|
51 |
-
"Conscientiousness": "medium",
|
52 |
-
"Extraversion": "low",
|
53 |
-
"Agreeableness": "high",
|
54 |
-
"Emotional stability": "medium"
|
55 |
-
}
|
56 |
-
```
|
57 |
-
|
58 |
-
---
|
59 |
-
|
60 |
-
## Project Structure
|
61 |
-
|
62 |
-
```
|
63 |
-
βββ personality_model.py # PersonalityClassifier pipeline
|
64 |
-
βββ test_personality_model.py # CLI tester
|
65 |
-
βββ feature_extraction/
|
66 |
-
β βββ __init__.py
|
67 |
-
β βββ embedding_from_text.py
|
68 |
-
β βββ liwc_from_text.py
|
69 |
-
βββ models/
|
70 |
-
β βββ openness_classifier.pkl
|
71 |
-
β βββ conscientiousness_classifier.pkl
|
72 |
-
β βββ extraversion_classifier.pkl
|
73 |
-
β βββ agreeableness_classifier.pkl
|
74 |
-
β βββ emotional_stability_classifier.pkl
|
75 |
-
β βββ feature_scaler.pkl
|
76 |
-
β βββ output.dic
|
77 |
-
βββ requirements.txt
|
78 |
-
βββ README.md
|
79 |
-
```
|
80 |
-
|
81 |
-
---
|
82 |
-
|
83 |
-
## Modeling Details
|
84 |
-
|
85 |
-
- Ensemble of 4 classifiers (VotingClassifier):
|
86 |
-
- `RandomForestClassifier`
|
87 |
-
- `GradientBoostingClassifier`
|
88 |
-
- `MLPClassifier`
|
89 |
-
- `SVC (linear)`
|
90 |
-
- Each trait has a separate classifier trained on combined BERT+LIWC features
|
91 |
-
- LIWC-style dictionary created from `output.dic`
|
92 |
-
|
93 |
-
---
|
94 |
-
|
95 |
-
## Preprocessing & Binning (for original experiments)
|
96 |
-
|
97 |
-
The original project also included regression models and binning rules:
|
98 |
-
|
99 |
-
| Score Range | Bin Label |
|
100 |
-
|-------------------|-----------|
|
101 |
-
| 0 β€ score β€ 32 | Low |
|
102 |
-
| 33 β€ score β€ 66 | Medium |
|
103 |
-
| 67 β€ score β€ 100 | High |
|
104 |
-
|
105 |
-
These were used to convert continuous personality scores into discrete labels.
|
106 |
-
|
107 |
-
---
|
108 |
-
|
109 |
-
## Evaluation Scripts
|
110 |
-
|
111 |
-
- Located in `evaluation/` folder (not shown here)
|
112 |
-
- Used during development to benchmark model performance
|
113 |
-
- Final classifiers are saved in `models/`
|
114 |
-
|
115 |
-
---
|
116 |
-
|
117 |
-
## Installation & Environment
|
118 |
-
|
119 |
-
Python: `3.9`
|
120 |
-
Recommended: `conda` environment
|
121 |
-
|
122 |
-
```bash
|
123 |
-
conda create -n amiv_nlp_2025 python=3.9
|
124 |
-
conda activate amiv_nlp_2025
|
125 |
-
pip install -r requirements.txt
|
126 |
-
```
|
127 |
-
|
128 |
-
---
|
129 |
-
|
130 |
-
## License
|
131 |
-
|
132 |
-
For research and non-commercial use. Contact the author for other permissions.
|
133 |
-
|
134 |
-
---
|
135 |
-
|
136 |
-
## Authors
|
137 |
-
|
138 |
-
Developed by
|
139 |
-
AMIV NLP 2025 β University of Antwerp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- personality-traits
|
5 |
+
- ensemble-model
|
6 |
+
- liwc
|
7 |
+
- big-five
|
8 |
+
- sklearn
|
9 |
+
- distilbert
|
10 |
+
- psychology
|
11 |
+
inference: false
|
12 |
+
---
|
13 |
+
|
14 |
+
# Personality Trait Predictor (Big Five)
|
15 |
+
|
16 |
+
This repository provides a machine learning pipeline for predicting the **Big Five personality traits** from free-form **text input**. It combines **DistilBERT embeddings**, **LIWC-style linguistic features**, and a set of **Random Forest classifiers** β one for each trait β trained on labeled personality data.
|
17 |
+
|
18 |
+
### Predicted traits:
|
19 |
+
- **Openness**
|
20 |
+
- **Conscientiousness**
|
21 |
+
- **Extraversion**
|
22 |
+
- **Agreeableness**
|
23 |
+
- **Emotional Stability**
|
24 |
+
|
25 |
+
Each trait is predicted as a **categorical label**: `low`, `medium`, or `high`.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## How It Works
|
30 |
+
|
31 |
+
- Text is converted to embeddings using the CLS token from `DistilBERT`.
|
32 |
+
- LIWC-like features are computed using a custom dictionary (`output.dic`).
|
33 |
+
- Both features are concatenated and passed through a **trait-specific Random Forest classifier**.
|
34 |
+
- Predictions are returned as string labels for all five traits.
|
35 |
+
|
36 |
+
---
|
37 |
+
|
38 |
+
## Example Usage
|
39 |
+
|
40 |
+
```python
|
41 |
+
from personality_model import PersonalityClassifier
|
42 |
+
|
43 |
+
model = PersonalityClassifier()
|
44 |
+
|
45 |
+
text = "I enjoy solving challenging problems and thinking about philosophical questions."
|
46 |
+
predictions = model.predict_all_traits(text)
|
47 |
+
|
48 |
+
print(predictions)
|
49 |
+
# Output:
|
50 |
+
# {
|
51 |
+
# 'Openness': 'high',
|
52 |
+
# 'Conscientiousness': 'medium',
|
53 |
+
# 'Extraversion': 'low',
|
54 |
+
# 'Agreeableness': 'medium',
|
55 |
+
# 'Emotional stability': 'low'
|
56 |
+
# }
|
57 |
+
```
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## Installation
|
62 |
+
|
63 |
+
Clone the repository and install dependencies:
|
64 |
+
|
65 |
+
```bash
|
66 |
+
git clone https://huggingface.co/Arash-Alborz/personality-trait-predictor
|
67 |
+
cd personality-trait-predictor
|
68 |
+
|
69 |
+
# Create a conda environment
|
70 |
+
conda create -n personality_env python=3.9
|
71 |
+
conda activate personality_env
|
72 |
+
|
73 |
+
# Install dependencies
|
74 |
+
pip install -r requirements.txt
|
75 |
+
```
|
76 |
+
|
77 |
+
---
|
78 |
+
|
79 |
+
## Project Structure
|
80 |
+
|
81 |
+
```
|
82 |
+
personality-trait-predictor/
|
83 |
+
βββ personality_model.py # Main class for prediction
|
84 |
+
βββ requirements.txt # Dependencies
|
85 |
+
βββ README.md # Project description
|
86 |
+
βββ .gitattributes # Git LFS tracking
|
87 |
+
βββ models/
|
88 |
+
β βββ feature_scaler.pkl # StandardScaler for feature scaling
|
89 |
+
β βββ output.dic # LIWC-style dictionary
|
90 |
+
β βββ openness_classifier.pkl # Classifier for Openness
|
91 |
+
β βββ conscientiousness_classifier.pkl
|
92 |
+
β βββ extraversion_classifier.pkl
|
93 |
+
β βββ agreeableness_classifier.pkl
|
94 |
+
β βββ emotional_stability_classifier.pkl
|
95 |
+
βββ feature_extraction/
|
96 |
+
β βββ __init__.py
|
97 |
+
β βββ embedding_from_text.py # BERT embedding code
|
98 |
+
β βββ liwc_from_text.py # LIWC feature extraction
|
99 |
+
β βββ pipeline.py # Combined feature pipeline
|
100 |
+
```
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
## Model Details
|
105 |
+
|
106 |
+
- **Embeddings**: `DistilBERT` (CLS token from `distilbert-base-cased-distilled-squad`)
|
107 |
+
- **Linguistic Features**: Word count vectors from a custom LIWC dictionary
|
108 |
+
- **Classifier**: One `RandomForestClassifier` per trait, tuned with custom hyperparameters
|
109 |
+
- **Scaling**: Features are scaled using `StandardScaler`
|
110 |
+
- **Labels**: Traits are categorized into `low`, `medium`, or `high`
|
111 |
+
|
112 |
+
---
|
113 |
+
|
114 |
+
## Training & Evaluation
|
115 |
+
|
116 |
+
- Each trait classifier was trained on a labeled dataset using combined BERT+LIWC features.
|
117 |
+
- Validation was performed on a separate set simulating job interview answers.
|
118 |
+
- Random Forest hyperparameters (e.g., `n_estimators`, `max_depth`) were manually optimized per trait for best F1-score.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## Notes
|
123 |
+
|
124 |
+
- The model does **not** use Hugging Faceβs `pipeline()` interface because it integrates custom feature engineering steps.
|
125 |
+
- You can import `PersonalityClassifier` directly to use the model.
|
126 |
+
|
127 |
+
---
|
128 |
+
|
129 |
+
## Requirements
|
130 |
+
|
131 |
+
Install with:
|
132 |
+
|
133 |
+
```bash
|
134 |
+
pip install -r requirements.txt
|
135 |
+
```
|
136 |
+
|
137 |
+
Dependencies include:
|
138 |
+
|
139 |
+
- numpy
|
140 |
+
- pandas
|
141 |
+
- scikit-learn
|
142 |
+
- torch
|
143 |
+
- transformers
|
144 |
+
- joblib
|
145 |
+
- tqdm
|
146 |
+
- gradio (optional for UI testing)
|
147 |
+
|
148 |
+
---
|
149 |
+
|
150 |
+
## Author
|
151 |
+
|
152 |
+
University of Antwerp β AMIV NLP 2025
|
153 |
+
Project developed as part of NLP Course.
|
154 |
+
|
155 |
+
---
|
156 |
+
|
157 |
+
## License
|
158 |
+
|
159 |
+
This project is licensed under the MIT License.
|