--- tags: - text-generation-inference - transformers - trl - sft license: apache-2.0 language: - en --- # INFERENCE ```python import time import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") finetuned_model = AutoModelForCausalLM.from_pretrained("AquilaX-AI/security_assistant") tokenizer = AutoTokenizer.from_pretrained("AquilaX-AI/security_assistant") finetuned_model.to(device) prompt = """<|im_start|>system You are a helpful AI assistant named Securitron<|im_end|> <|im_start|>user cwe_id:CWE-20 cwe_name:Improper Input Validation affected_line:Pattern Undefined (v3) partial_code:example: c4d5ea2f-81a2-4a05-bcd3-202126ae21df name: type: string example: Toolbox serial: file_name:itemit_openapi.yaml status:True Positive reason: There is no pattern property that could lead to insufficient input validation. remediation_action: Always define a pattern to ensure strict input validation. How to fix this?<|im_end|> <|im_start|>assistant """ s = time.time() encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids.to(device) text_streamer = TextStreamer(tokenizer, skip_prompt = True) # Increase max_new_tokens if needed response = finetuned_model.generate( input_ids=encodeds, streamer=text_streamer, max_new_tokens=512, use_cache=True, pad_token_id=151645, eos_token_id=151645, num_return_sequences=1 ) e = time.time() print(f'time taken:{e-s}') ```