svm-vgg-model / svm_vgg_preprocessor.py
ApostolosK's picture
Update svm_vgg_preprocessor.py
fcf6aaa verified
# svm_vgg_preprocessor.py
import torch
import numpy as np
from torchvision import transforms
from torchvision.models import vgg16
from PIL import Image
class FeatureExtractor:
def __init__(self):
# Load VGG16 with original architecture
self.vgg = vgg16(weights='DEFAULT')
self.vgg.eval()
# Use only convolutional features (matches original code)
self.conv_extractor = self.vgg.features
# Original preprocessing
self.preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
def extract_fc_cnn_features(self, image_path):
"""Matches original FC-CNN feature extraction (conv features)"""
img = Image.open(image_path).convert('RGB')
img_tensor = self.preprocess(img).unsqueeze(0)
with torch.no_grad():
features = self.conv_extractor(img_tensor)
return features.squeeze().numpy().flatten()
def extract_fv_cnn_features(self, image_path):
"""Matches original FV-CNN feature extraction (conv features)"""
img = Image.open(image_path).convert('RGB')
img_tensor = self.preprocess(img).unsqueeze(0)
with torch.no_grad():
features = self.conv_extractor(img_tensor)
return features.squeeze().numpy().flatten()
def extract_combined_features(self, image_path):
"""Original concatenation of identical features"""
fc = self.extract_fc_cnn_features(image_path)
fv = self.extract_fv_cnn_features(image_path)
return np.concatenate((fc, fv))