File size: 10,691 Bytes
b62310c ec175b1 b62310c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
base_model: HuggingFaceH4/starchat2-15b-sft-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
model-index:
- name: starchat2-15b-v0.1
results: []
---
# Exllama v2 Quantizations of starchat2-15b-v0.1
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.21">turboderp's ExLlamaV2 v0.0.21</a> for quantization.
<b>The "main" branch only contains the measurement.json, download one of the other branches for the model</b>
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: <a href="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1">HuggingFaceH4/starchat2-15b-v0.1</a><br>
Calibration dataset based on: <a href="https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k">bigcode/self-oss-instruct-sc2-exec-filter-50k</a>
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/Apel-sin/starchat2-15b-v0.1-exl2/tree/8_0) | 8.0 | 8.0 | 16.6 GB | 17.5 GB | 18.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/Apel-sin/starchat2-15b-v0.1-exl2/tree/6_5) | 6.5 | 8.0 | 13.9 GB | 14.9 GB | 16.2 GB | Near unquantized performance at vastly reduced size, **recommended**. |
| [5_5](https://huggingface.co/Apel-sin/starchat2-15b-v0.1-exl2/tree/5_5) | 5.5 | 8.0 | 12.6 GB | 13.6 GB | 14.9 GB | Slightly lower quality vs 6.5. |
<img src="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/resolve/main/model_logo.png" alt="StarChat2 15B Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for StarChat2 15B
StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat2 is the latest model in the series, and is a fine-tuned version of [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b) that was trained with SFT and DPO on a mix of synthetic datasets.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** A 16B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English and 80+ programming languages.
- **License:** BigCode Open RAIL-M v1
- **Finetuned from model:** [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground
## Performance
StarChat2 15B was trained to balance chat and programming capabilities. It achieves strong performance on chat benchmarks like [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [IFEval](https://arxiv.org/abs/2311.07911), as well as the canonical HumanEval benchmark for Python code completion. The scores reported below were obtained using the [LightEval](https://github.com/huggingface/lighteval) evaluation suite (commit `988959cb905df4baa050f82b4d499d46e8b537f2`) and each prompt has been formatted with the model's corresponding chat template to simulate real-world usage. This is why some scores may differ from those reported in technical reports or on the Open LLM Leaderboard.
| Model | MT Bench | IFEval | HumanEval |
|-------------------------------------------------------------------------------------------------|---------:|-------:|----------:|
| [starchat2-15b-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1) | 7.66 | 35.12 | 71.34 |
| [deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | 4.17 | 14.23 | 80.48 |
| [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | 6.80 | 43.44 | 50.60 |
## Intended uses & limitations
The model was fine-tuned on a blend of chat, code, math, and reasoning datasets. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground) to test its coding capabilities.
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# pip install 'transformers @ git+https://github.com/huggingface/transformers.git@831bc25d8fdb85768402f772cf65cc3d7872b211'
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/starchat2-15b-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "You are StarChat2, an expert programming assistant",
},
{"role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random Chuck Norris joke."},
]
outputs = pipe(
messages,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
StarChat2 15B has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder2 dataset](https://huggingface.co/datasets/bigcode/the-stack-v2)
Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect.
For example, it may produce code that does not compile or that produces incorrect results.
It may also produce code that is vulnerable to security exploits.
We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.
StarChat2 15B was fine-tuned from the base model [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoder2-15b#limitations) for relevant information.
In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://huggingface.co/papers/2402.19173).
## Training details
This model is a fine-tuned version of [starchat2-15b-sft-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/orca_dpo_pairs datasets. Check out the recipe in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook) for more details.
It achieves the following results on the evaluation set:
- Loss: 0.4347
- Rewards/chosen: -0.9461
- Rewards/rejected: -2.7745
- Rewards/accuracies: 0.7658
- Rewards/margins: 1.8284
- Logps/rejected: -322.1934
- Logps/chosen: -316.1898
- Logits/rejected: -2.3817
- Logits/chosen: -2.3005
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.717 | 0.17 | 100 | 0.6006 | -0.0924 | -0.2899 | 0.6329 | 0.1975 | -272.5022 | -299.1165 | -2.5313 | -2.4191 |
| 0.6273 | 0.35 | 200 | 0.5160 | -0.3994 | -0.9461 | 0.6930 | 0.5467 | -285.6261 | -305.2568 | -2.5281 | -2.4278 |
| 0.5538 | 0.52 | 300 | 0.4781 | -0.6589 | -1.5892 | 0.7247 | 0.9302 | -298.4870 | -310.4470 | -2.4996 | -2.4110 |
| 0.5056 | 0.7 | 400 | 0.4594 | -0.8283 | -2.1332 | 0.7437 | 1.3050 | -309.3687 | -313.8344 | -2.4472 | -2.3644 |
| 0.4983 | 0.87 | 500 | 0.4512 | -0.7758 | -2.2806 | 0.7468 | 1.5049 | -312.3167 | -312.7843 | -2.4223 | -2.3404 |
| 0.4662 | 1.04 | 600 | 0.4431 | -0.7839 | -2.4016 | 0.7658 | 1.6177 | -314.7355 | -312.9465 | -2.4049 | -2.3215 |
| 0.4411 | 1.22 | 700 | 0.4415 | -1.0090 | -2.7582 | 0.7690 | 1.7492 | -321.8679 | -317.4481 | -2.3840 | -2.3016 |
| 0.471 | 1.39 | 800 | 0.4368 | -0.9617 | -2.7445 | 0.7690 | 1.7828 | -321.5930 | -316.5019 | -2.3809 | -2.2991 |
| 0.4485 | 1.57 | 900 | 0.4351 | -0.9490 | -2.7594 | 0.7722 | 1.8103 | -321.8916 | -316.2497 | -2.3815 | -2.3004 |
| 0.4411 | 1.74 | 1000 | 0.4348 | -0.9293 | -2.7469 | 0.7658 | 1.8176 | -321.6409 | -315.8547 | -2.3823 | -2.3011 |
| 0.4499 | 1.92 | 1100 | 0.4348 | -0.9482 | -2.7767 | 0.7658 | 1.8285 | -322.2369 | -316.2320 | -2.3828 | -2.3012 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|