Antiraedus commited on
Commit
bb358dd
·
1 Parent(s): adea81b

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 910.42 +/- 431.87
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 370.63 +/- 94.68
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c58a439e6c4bc3e72c1d9cb7b631b112e716c92ee3d738dfbb4dee2c44fd89e
3
- size 129260
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce4718591a85486171498f357d1a7676562106b3ed8d91715e133817a48793f
3
+ size 125372
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c6af48f70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c6af4d040>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c6af4d0d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c6af4d160>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9c6af4d1f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9c6af4d280>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c6af4d310>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c6af4d3a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9c6af4d430>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c6af4d4c0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c6af4d550>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c6af4d5e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f9c6af449c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -59,12 +59,12 @@
59
  "_np_random": null
60
  },
61
  "n_envs": 4,
62
- "num_timesteps": 2000000,
63
  "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1675482358034860660,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,7 +73,7 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG8dYj75REM+QNUiP/BHOT6VhBY/WLkyv8byIj+NI7+//5Y2P6XGPr5WwVk/BEwKwMtIdj7D6ns/VBEuP6P3DTy5lpc/583LP8XXaT8+NW48rT6ivkXa3b55IhY+D/wBQF5hjL/j9hA//m0CwMppgb+IE4k+GWzsvmt75T6IJzA/2RLbP6CY4T+lZhE+jlthvyLZ9DwjBhA/d/GNP39aRD/Khj4+fTpDv8yEGj/k79S+s34SPuhCMr/XyNA+L2GjP4Tv1b785jq/pjlUPdXtHMBeYYy/4/YQPzA7+z7KaYG/ZLhlPtbTlr8RmWq+wmuov0Ltgb0oxNY9HcRBvwh7HsB3gS8/NywTu9kkR0DaCJG9p0eav9MHoDqU/TQ/2wkrPU7vcj7qtMW81iw0PwZygzwOZEm/sxGlvadGcr+W36G8SGxpP+P2ED8wO/s+ymmBv9OwEr48RtO/doK+vybBmr+fUok9/S8Jvzfi9r6zGZm/aAh7vmhzAb8mxQM/mKpUv3a/bL8iAYG/nrM1P3Vzz71Xdk4/Tn0Fv0Oulj10ItW/FFYKv5n6XD9UmpU/+sYLv15hjL/j9hA/MDv7PlM0fT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,21 +81,21 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAyCRi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgmMSPgAAAAAebtq/AAAAAPHx7jsAAAAA4wz/PwAAAAAbami9AAAAAB3K8D8AAAAAXIi5vQAAAABR7di/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZpQANwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC3YC74AAAAAGnDnvwAAAAC0juM9AAAAABPo4D8AAAAAagsYvQAAAACA9v8/AAAAAAEd7b0AAAAAWm3/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYXdTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA0w9O9AAAAAFdM/L8AAAAAgWQmvQAAAAA56dg/AAAAAHVqpD0AAAAAr6bePwAAAACXdzW8AAAAAFD7+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvaCY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHPAAvQAAAAD8i+i/AAAAAPwBsb0AAAAAybXnPwAAAAC5eCs9AAAAAKi+8j8AAAAAGoT7vQAAAAC/yOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
88
  "sde_sample_freq": -1,
89
- "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZpS2WpqAWMAWyUTegDjAF0lEdAp92EbNr0rnV9lChoBkdAmZTVqnFYMmgHTegDaAhHQKfe9cry1/l1fZQoaAZHQI4AdzKcNH9oB03oA2gIR0Cn4VeCCjDbdX2UKGgGR0Cclyye7L+xaAdN6ANoCEdAp+GLgsK9f3V9lChoBkdAmCjs14xDcGgHTegDaAhHQKfpcyKNyYJ1fZQoaAZHQIc6oRChN/RoB03oA2gIR0Cn6t97v5P/dX2UKGgGR0CZdTEJBw+/aAdN6ANoCEdAp+00WdmQKnV9lChoBkdAlM/DC+De02gHTegDaAhHQKftas/Y8Md1fZQoaAZHQEf15E+gUURoB03oA2gIR0Cn9S/a6BiDdX2UKGgGR0Cc0ik2gnMMaAdN6ANoCEdAp/aMJOWSlnV9lChoBkdAm8qf9LpRoGgHTegDaAhHQKf41Pdl/Yt1fZQoaAZHQJlzlbGFSKpoB03oA2gIR0Cn+QgsCkoGdX2UKGgGR0CbMxbEgntwaAdN6ANoCEdAqADt9KEnLXV9lChoBkdAmoo6iwjdHmgHTegDaAhHQKgCasV+I/J1fZQoaAZHQJzAoZTAFgVoB03oA2gIR0CoBNq64Ds/dX2UKGgGR0Cb/4zUI9kjaAdN6ANoCEdAqAUTSJCSinV9lChoBkdAnIiFM23rlmgHTegDaAhHQKgNBx82Ji11fZQoaAZHQJl/YRChN/RoB03oA2gIR0CoDn0OVgQZdX2UKGgGR0CaWSSWJJoTaAdN6ANoCEdAqBDee6I3znV9lChoBkdAl7z+x4Y772gHTegDaAhHQKgRFWPLgXN1fZQoaAZHQJsim0ngHeJoB03oA2gIR0CoGQeNDMNddX2UKGgGR0CZr5flIVdpaAdN6ANoCEdAqBp4HkcS5HV9lChoBkdAlXr13t8eCGgHTegDaAhHQKgczcu8K5V1fZQoaAZHQJE/KlrM1TBoB03oA2gIR0CoHQLKvFFVdX2UKGgGR0Cal8j9GZuyaAdN6ANoCEdAqCTy/mDDj3V9lChoBkdAmV9Nt2s7uGgHTegDaAhHQKgmbgv114h1fZQoaAZHQJwbn6FdszloB03oA2gIR0CoKL3os7MgdX2UKGgGR0CZqAhEjPfLaAdN6ANoCEdAqCjyzZ6D5HV9lChoBkdAm+y+UpuuR2gHTegDaAhHQKgws6Zpi7V1fZQoaAZHQJpMvg0j1PFoB03oA2gIR0CoMh9at9x7dX2UKGgGR0Ca5Q6t1ZDBaAdN6ANoCEdAqDSFroGIK3V9lChoBkdAnQcFCswL3WgHTegDaAhHQKg0x3i704B1fZQoaAZHQJpM5VFQVKxoB03oA2gIR0CoPLX2mHgxdX2UKGgGR0CamkZntfG/aAdN6ANoCEdAqD4gESuhbnV9lChoBkdAmvLhUNrj52gHTegDaAhHQKhAgJBPbfx1fZQoaAZHQJrl3GDL8rJoB03oA2gIR0CoQLR0uDjBdX2UKGgGR0CXuux33YcvaAdN6ANoCEdAqEiNmjCYTnV9lChoBkdAmoLrtJFspGgHTegDaAhHQKhKALfk3jx1fZQoaAZHQJsJvMvAXVNoB03oA2gIR0CoTF0T101ZdX2UKGgGR0CdJsSJTER8aAdN6ANoCEdAqEyTIo3JgnV9lChoBkdAhgYJKzzErGgHTegDaAhHQKhUgQvHtF91fZQoaAZHQJ3+ZR3u/lBoB03oA2gIR0CoVeLdvbXZdX2UKGgGR0CdSNDe0ojOaAdN6ANoCEdAqFgnSc9W63V9lChoBkdAmt3iJKraNGgHTegDaAhHQKhYXr2xptd1fZQoaAZHQIvUYIppeu5oB03oA2gIR0CoYEcUVSGbdX2UKGgGR0CcDDdZ7ojfaAdN6ANoCEdAqGGlLFn7HnV9lChoBkdAnMFd3GGVRmgHTegDaAhHQKhj6wyIpH91fZQoaAZHQJzrFUzbeuVoB03oA2gIR0CoZB8e0XxfdX2UKGgGR0CbgM6X0Gu+aAdN6ANoCEdAqGvEPDpC8nV9lChoBkdAm5C3dKujh2gHTegDaAhHQKhtIN+9all1fZQoaAZHQJhGzG5tm+VoB03AA2gIR0CobyQKa5PNdX2UKGgGR0CcFQILw4KhaAdN6ANoCEdAqG9nO0LMLXV9lChoBkdAnEz9K/VRUGgHTegDaAhHQKh3c0svqTt1fZQoaAZHQJoa3tsvZh9oB03oA2gIR0CoeNusLfDUdX2UKGgGR0CYCdQg9vCNaAdN6ANoCEdAqHrpbjcVQHV9lChoBkdAmHGvzWf9P2gHTegDaAhHQKh7LIn0Cih1fZQoaAZHQJysHyZrpJRoB03oA2gIR0Cog2XpwCKadX2UKGgGR0Car8gZTAFgaAdN6ANoCEdAqITJRKpT/HV9lChoBkdAniWo2GZeA2gHTegDaAhHQKiG4mQ8wHt1fZQoaAZHQJtmI91U2k1oB03oA2gIR0CohyiRwIdEdX2UKGgGR0CcRmfIjnmraAdN6ANoCEdAqI9DU1AJLXV9lChoBkdAmnL+BH09Q2gHTegDaAhHQKiQrbB42TB1fZQoaAZHQJkJGJXQtz1oB03oA2gIR0Cokska2nbZdX2UKGgGR0CWtDFTvRZ2aAdN6ANoCEdAqJMYTufEoHV9lChoBkdAltQhOk+HJ2gHTegDaAhHQKibTx5LRKJ1fZQoaAZHQJSGUasIVudoB03oA2gIR0ConLpxNqQBdX2UKGgGR0CRuwQD3dsSaAdN6ANoCEdAqJ7FqYZ2p3V9lChoBkdAkIChlYlpoWgHTegDaAhHQKifBvddmg91fZQoaAZHQHpkhIFvAGloB03oA2gIR0Cop02Zy+6AdX2UKGgGR0CG8CuMdcSoaAdN6ANoCEdAqKi75M10knV9lChoBkdAjHuv5HmRvGgHTegDaAhHQKiqyE7nxKB1fZQoaAZHQIvP9CJGe+VoB03oA2gIR0Coqwf9xZMddX2UKGgGR0CIIeUBXCCSaAdN6ANoCEdAqLMTd30PH3V9lChoBkdAiejANoakymgHTegDaAhHQKi0jl8PWhB1fZQoaAZHQH6wCJ0nw5NoB03oA2gIR0Cotp4J/oaDdX2UKGgGR0CAOAV/tpmFaAdN6ANoCEdAqLbfZkCmuXV9lChoBkdAgMhUBfa6BmgHTegDaAhHQKi+9JOFg2J1fZQoaAZHQHfk8/dIoVpoB03oA2gIR0CowFFruYx+dX2UKGgGR0CCKjbJOnEVaAdN6ANoCEdAqMJkVk+X7nV9lChoBkdAgLVS/KyOaWgHTegDaAhHQKjCq0a6z3R1fZQoaAZHQJbNtNoJzDJoB03oA2gIR0CoysQ/PgNxdX2UKGgGR0CWvh7WuoxYaAdN6ANoCEdAqMwiMtK7I3V9lChoBkdAlzydELH+62gHTegDaAhHQKjOKCUX5311fZQoaAZHQJoLcvAXVLBoB03oA2gIR0Cozmkgntv5dX2UKGgGR0CW9LgGr0aqaAdN6ANoCEdAqNZMyHmA9XV9lChoBkdAmmBnqqwQlWgHTegDaAhHQKjXvGuLaVV1fZQoaAZHQJgDR7XxvvVoB03oA2gIR0Co2dSqdYnwdX2UKGgGR0CGGYc+7lJZaAdN6ANoCEdAqNoY1vVEu3V9lChoBkdAjSj0iY9gW2gHTegDaAhHQKjk3Cojv/l1fZQoaAZHQJD7DEGZ/kNoB03oA2gIR0Co5utjslcAdX2UKGgGR0CScUkKeCkHaAdN6ANoCEdAqOkC9Zid8XV9lChoBkdAkYVIRywOfGgHTegDaAhHQKjpTPj4pMJ1fZQoaAZHQHYzPGACnxdoB03oA2gIR0Co8d7vG6wudX2UKGgGR0CBMzz5GjKxaAdN6ANoCEdAqPNehXbM5nV9lChoBkdAlpk72L5yl2gHTegDaAhHQKj1m0ALiMp1fZQoaAZHQHg/06xPfsNoB03oA2gIR0Co9eP4dp7DdX2UKGgGR0CV7vah6By0aAdN6ANoCEdAqP4PbM5fdHV9lChoBkdAly4G4y44ImgHTegDaAhHQKj/fustCiR1fZQoaAZHQJXOFfqoqCpoB03oA2gIR0CpAZExqO94dX2UKGgGR0CXYtJhfBvaaAdN6ANoCEdAqQHYqiGnGnVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
- "_n_updates": 62500,
99
  "n_steps": 8,
100
  "gamma": 0.99,
101
  "gae_lambda": 0.9,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14aaeaedc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14aaeaee50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14aaeaeee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14aaeaef70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f14aaeb2040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f14aaeb20d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14aaeb2160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14aaeb21f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f14aaeb2280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14aaeb2310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14aaeb23a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14aaeb2430>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f14aae99ab0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
59
  "_np_random": null
60
  },
61
  "n_envs": 4,
62
+ "num_timesteps": 5420,
63
  "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
+ "start_time": 1675492726507803415,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
 
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO+CLb+8Bt68x4McP2kcGz7K34a+y3jGPV8yE0B4Z5g+urdHv2xcjD5TXsQ/fIzbve2mGT8zyMC8KrknwFvGVj/8p6i/g4zUOz5XJz8FmtI9OIN6P94njzx7dbi/EZ4EvoBupz7boxPA+qEtP9i/ED/6PIM/vq+6vxrGyL9gu927pR+lvJ30Rj66qgC/tvaeP3+bWL8WO2M8cCc9v5L9nL1WNAXAV/T2vKlhAT8Vxmk9/dyVPx6xujyOt9K/ve6lPZ29or9tbye8M/tbP0nrDr2Abqc+9PHdPl24vL/YvxA/zaslQCto/j4bsEI/mWLBwIcVzz8Y5dQ/0bM7P4DI2j7gmz6/y+2cP96/pz+m8nu/RpwZPzS0Lr1phi7APfVjPUOecL5Hjy5AmKwJvwrMM7/KQSC/FeRJQBMPl74uVHO9gG6nPtujE8D6oS0/2L8QPwDDOD+XogM8LrshP8NwkrwxooM8ol9ZPrkavT8K3Iq+MzZav7rg9TsjcMQ/5LdgvV7tGT8ZKIO9e/Gbvxo2qL7Vt6e/cm3TuarL9D6eFF49jdl5P5kLbLvM65W+VN22vIBupz7boxPA+qEtP9i/ED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADjpHS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcRLSPQAAAACuO+O/AAAAAMGQ8rwAAAAAYtjnPwAAAADoM6E9AAAAAIMJ4z8AAAAAlDXQPQAAAAB2FOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXAUMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGTsgj0AAAAA8hjkvwAAAACVJ6U9AAAAALwz9j8AAAAA1V58vQAAAAAX5+k/AAAAAJIDEL4AAAAAjsbZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUfQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAx18q8AAAAAEHN8L8AAAAAst6MPQAAAABfFOk/AAAAAAUbpj0AAAAAncX0PwAAAABjz0k9AAAAAJdy378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARq/o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA53EQvgAAAAAY8/i/AAAAAJ9a770AAAAA0Y7mPwAAAADv/Mi8AAAAAIHQ6T8AAAAApDORvQAAAADCC/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
88
  "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.997296,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWV4QAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCNajWTX8SMAWyUTSQCjAF0lEdAOlC2c8TzunV9lChoBkdAU/W8ujASF2gHS4toCEdAOzHHJcPe6HV9lChoBkdAeTcLThHby2gHTegDaAhHQD0c+qzZ6D51fZQoaAZHQHNjHHim2stoB03oA2gIR0A9HVj7Q9iddX2UKGgGR0B2lFR/EwWWaAdN6ANoCEdAPR2bsniNsHV9lChoBkdAanXgCOmzjWgHTZkBaAhHQD28figkC3h1ZS4="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
+ "_n_updates": 169,
99
  "n_steps": 8,
100
  "gamma": 0.99,
101
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c139944e09a37fe19033997bfa07ceac71e259cef4e2ae0acafefa5607e995b
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2043bebcba8ed986caad154f4034d7acc5f15e30f22922067d45d49764122f3e
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:02b91d4203c0e2bd63a87d0a5a89f9e47e9c3ec9795b29825573f80a35851d93
3
  size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:085c31722a64a075a2bc2c2cd993140e2fb0665e91e7642c736ff0a0b752631e
3
  size 56958
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c6af48f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c6af4d040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c6af4d0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c6af4d160>", "_build": "<function ActorCriticPolicy._build at 0x7f9c6af4d1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c6af4d280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c6af4d310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c6af4d3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c6af4d430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c6af4d4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c6af4d550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c6af4d5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c6af449c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675482358034860660, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG8dYj75REM+QNUiP/BHOT6VhBY/WLkyv8byIj+NI7+//5Y2P6XGPr5WwVk/BEwKwMtIdj7D6ns/VBEuP6P3DTy5lpc/583LP8XXaT8+NW48rT6ivkXa3b55IhY+D/wBQF5hjL/j9hA//m0CwMppgb+IE4k+GWzsvmt75T6IJzA/2RLbP6CY4T+lZhE+jlthvyLZ9DwjBhA/d/GNP39aRD/Khj4+fTpDv8yEGj/k79S+s34SPuhCMr/XyNA+L2GjP4Tv1b785jq/pjlUPdXtHMBeYYy/4/YQPzA7+z7KaYG/ZLhlPtbTlr8RmWq+wmuov0Ltgb0oxNY9HcRBvwh7HsB3gS8/NywTu9kkR0DaCJG9p0eav9MHoDqU/TQ/2wkrPU7vcj7qtMW81iw0PwZygzwOZEm/sxGlvadGcr+W36G8SGxpP+P2ED8wO/s+ymmBv9OwEr48RtO/doK+vybBmr+fUok9/S8Jvzfi9r6zGZm/aAh7vmhzAb8mxQM/mKpUv3a/bL8iAYG/nrM1P3Vzz71Xdk4/Tn0Fv0Oulj10ItW/FFYKv5n6XD9UmpU/+sYLv15hjL/j9hA/MDv7PlM0fT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAyCRi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgmMSPgAAAAAebtq/AAAAAPHx7jsAAAAA4wz/PwAAAAAbami9AAAAAB3K8D8AAAAAXIi5vQAAAABR7di/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZpQANwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC3YC74AAAAAGnDnvwAAAAC0juM9AAAAABPo4D8AAAAAagsYvQAAAACA9v8/AAAAAAEd7b0AAAAAWm3/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYXdTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA0w9O9AAAAAFdM/L8AAAAAgWQmvQAAAAA56dg/AAAAAHVqpD0AAAAAr6bePwAAAACXdzW8AAAAAFD7+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvaCY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHPAAvQAAAAD8i+i/AAAAAPwBsb0AAAAAybXnPwAAAAC5eCs9AAAAAKi+8j8AAAAAGoT7vQAAAAC/yOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZpS2WpqAWMAWyUTegDjAF0lEdAp92EbNr0rnV9lChoBkdAmZTVqnFYMmgHTegDaAhHQKfe9cry1/l1fZQoaAZHQI4AdzKcNH9oB03oA2gIR0Cn4VeCCjDbdX2UKGgGR0Cclyye7L+xaAdN6ANoCEdAp+GLgsK9f3V9lChoBkdAmCjs14xDcGgHTegDaAhHQKfpcyKNyYJ1fZQoaAZHQIc6oRChN/RoB03oA2gIR0Cn6t97v5P/dX2UKGgGR0CZdTEJBw+/aAdN6ANoCEdAp+00WdmQKnV9lChoBkdAlM/DC+De02gHTegDaAhHQKftas/Y8Md1fZQoaAZHQEf15E+gUURoB03oA2gIR0Cn9S/a6BiDdX2UKGgGR0Cc0ik2gnMMaAdN6ANoCEdAp/aMJOWSlnV9lChoBkdAm8qf9LpRoGgHTegDaAhHQKf41Pdl/Yt1fZQoaAZHQJlzlbGFSKpoB03oA2gIR0Cn+QgsCkoGdX2UKGgGR0CbMxbEgntwaAdN6ANoCEdAqADt9KEnLXV9lChoBkdAmoo6iwjdHmgHTegDaAhHQKgCasV+I/J1fZQoaAZHQJzAoZTAFgVoB03oA2gIR0CoBNq64Ds/dX2UKGgGR0Cb/4zUI9kjaAdN6ANoCEdAqAUTSJCSinV9lChoBkdAnIiFM23rlmgHTegDaAhHQKgNBx82Ji11fZQoaAZHQJl/YRChN/RoB03oA2gIR0CoDn0OVgQZdX2UKGgGR0CaWSSWJJoTaAdN6ANoCEdAqBDee6I3znV9lChoBkdAl7z+x4Y772gHTegDaAhHQKgRFWPLgXN1fZQoaAZHQJsim0ngHeJoB03oA2gIR0CoGQeNDMNddX2UKGgGR0CZr5flIVdpaAdN6ANoCEdAqBp4HkcS5HV9lChoBkdAlXr13t8eCGgHTegDaAhHQKgczcu8K5V1fZQoaAZHQJE/KlrM1TBoB03oA2gIR0CoHQLKvFFVdX2UKGgGR0Cal8j9GZuyaAdN6ANoCEdAqCTy/mDDj3V9lChoBkdAmV9Nt2s7uGgHTegDaAhHQKgmbgv114h1fZQoaAZHQJwbn6FdszloB03oA2gIR0CoKL3os7MgdX2UKGgGR0CZqAhEjPfLaAdN6ANoCEdAqCjyzZ6D5HV9lChoBkdAm+y+UpuuR2gHTegDaAhHQKgws6Zpi7V1fZQoaAZHQJpMvg0j1PFoB03oA2gIR0CoMh9at9x7dX2UKGgGR0Ca5Q6t1ZDBaAdN6ANoCEdAqDSFroGIK3V9lChoBkdAnQcFCswL3WgHTegDaAhHQKg0x3i704B1fZQoaAZHQJpM5VFQVKxoB03oA2gIR0CoPLX2mHgxdX2UKGgGR0CamkZntfG/aAdN6ANoCEdAqD4gESuhbnV9lChoBkdAmvLhUNrj52gHTegDaAhHQKhAgJBPbfx1fZQoaAZHQJrl3GDL8rJoB03oA2gIR0CoQLR0uDjBdX2UKGgGR0CXuux33YcvaAdN6ANoCEdAqEiNmjCYTnV9lChoBkdAmoLrtJFspGgHTegDaAhHQKhKALfk3jx1fZQoaAZHQJsJvMvAXVNoB03oA2gIR0CoTF0T101ZdX2UKGgGR0CdJsSJTER8aAdN6ANoCEdAqEyTIo3JgnV9lChoBkdAhgYJKzzErGgHTegDaAhHQKhUgQvHtF91fZQoaAZHQJ3+ZR3u/lBoB03oA2gIR0CoVeLdvbXZdX2UKGgGR0CdSNDe0ojOaAdN6ANoCEdAqFgnSc9W63V9lChoBkdAmt3iJKraNGgHTegDaAhHQKhYXr2xptd1fZQoaAZHQIvUYIppeu5oB03oA2gIR0CoYEcUVSGbdX2UKGgGR0CcDDdZ7ojfaAdN6ANoCEdAqGGlLFn7HnV9lChoBkdAnMFd3GGVRmgHTegDaAhHQKhj6wyIpH91fZQoaAZHQJzrFUzbeuVoB03oA2gIR0CoZB8e0XxfdX2UKGgGR0CbgM6X0Gu+aAdN6ANoCEdAqGvEPDpC8nV9lChoBkdAm5C3dKujh2gHTegDaAhHQKhtIN+9all1fZQoaAZHQJhGzG5tm+VoB03AA2gIR0CobyQKa5PNdX2UKGgGR0CcFQILw4KhaAdN6ANoCEdAqG9nO0LMLXV9lChoBkdAnEz9K/VRUGgHTegDaAhHQKh3c0svqTt1fZQoaAZHQJoa3tsvZh9oB03oA2gIR0CoeNusLfDUdX2UKGgGR0CYCdQg9vCNaAdN6ANoCEdAqHrpbjcVQHV9lChoBkdAmHGvzWf9P2gHTegDaAhHQKh7LIn0Cih1fZQoaAZHQJysHyZrpJRoB03oA2gIR0Cog2XpwCKadX2UKGgGR0Car8gZTAFgaAdN6ANoCEdAqITJRKpT/HV9lChoBkdAniWo2GZeA2gHTegDaAhHQKiG4mQ8wHt1fZQoaAZHQJtmI91U2k1oB03oA2gIR0CohyiRwIdEdX2UKGgGR0CcRmfIjnmraAdN6ANoCEdAqI9DU1AJLXV9lChoBkdAmnL+BH09Q2gHTegDaAhHQKiQrbB42TB1fZQoaAZHQJkJGJXQtz1oB03oA2gIR0Cokska2nbZdX2UKGgGR0CWtDFTvRZ2aAdN6ANoCEdAqJMYTufEoHV9lChoBkdAltQhOk+HJ2gHTegDaAhHQKibTx5LRKJ1fZQoaAZHQJSGUasIVudoB03oA2gIR0ConLpxNqQBdX2UKGgGR0CRuwQD3dsSaAdN6ANoCEdAqJ7FqYZ2p3V9lChoBkdAkIChlYlpoWgHTegDaAhHQKifBvddmg91fZQoaAZHQHpkhIFvAGloB03oA2gIR0Cop02Zy+6AdX2UKGgGR0CG8CuMdcSoaAdN6ANoCEdAqKi75M10knV9lChoBkdAjHuv5HmRvGgHTegDaAhHQKiqyE7nxKB1fZQoaAZHQIvP9CJGe+VoB03oA2gIR0Coqwf9xZMddX2UKGgGR0CIIeUBXCCSaAdN6ANoCEdAqLMTd30PH3V9lChoBkdAiejANoakymgHTegDaAhHQKi0jl8PWhB1fZQoaAZHQH6wCJ0nw5NoB03oA2gIR0Cotp4J/oaDdX2UKGgGR0CAOAV/tpmFaAdN6ANoCEdAqLbfZkCmuXV9lChoBkdAgMhUBfa6BmgHTegDaAhHQKi+9JOFg2J1fZQoaAZHQHfk8/dIoVpoB03oA2gIR0CowFFruYx+dX2UKGgGR0CCKjbJOnEVaAdN6ANoCEdAqMJkVk+X7nV9lChoBkdAgLVS/KyOaWgHTegDaAhHQKjCq0a6z3R1fZQoaAZHQJbNtNoJzDJoB03oA2gIR0CoysQ/PgNxdX2UKGgGR0CWvh7WuoxYaAdN6ANoCEdAqMwiMtK7I3V9lChoBkdAlzydELH+62gHTegDaAhHQKjOKCUX5311fZQoaAZHQJoLcvAXVLBoB03oA2gIR0Cozmkgntv5dX2UKGgGR0CW9LgGr0aqaAdN6ANoCEdAqNZMyHmA9XV9lChoBkdAmmBnqqwQlWgHTegDaAhHQKjXvGuLaVV1fZQoaAZHQJgDR7XxvvVoB03oA2gIR0Co2dSqdYnwdX2UKGgGR0CGGYc+7lJZaAdN6ANoCEdAqNoY1vVEu3V9lChoBkdAjSj0iY9gW2gHTegDaAhHQKjk3Cojv/l1fZQoaAZHQJD7DEGZ/kNoB03oA2gIR0Co5utjslcAdX2UKGgGR0CScUkKeCkHaAdN6ANoCEdAqOkC9Zid8XV9lChoBkdAkYVIRywOfGgHTegDaAhHQKjpTPj4pMJ1fZQoaAZHQHYzPGACnxdoB03oA2gIR0Co8d7vG6wudX2UKGgGR0CBMzz5GjKxaAdN6ANoCEdAqPNehXbM5nV9lChoBkdAlpk72L5yl2gHTegDaAhHQKj1m0ALiMp1fZQoaAZHQHg/06xPfsNoB03oA2gIR0Co9eP4dp7DdX2UKGgGR0CV7vah6By0aAdN6ANoCEdAqP4PbM5fdHV9lChoBkdAly4G4y44ImgHTegDaAhHQKj/fustCiR1fZQoaAZHQJXOFfqoqCpoB03oA2gIR0CpAZExqO94dX2UKGgGR0CXYtJhfBvaaAdN6ANoCEdAqQHYqiGnGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14aaeaedc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14aaeaee50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14aaeaeee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14aaeaef70>", "_build": "<function ActorCriticPolicy._build at 0x7f14aaeb2040>", "forward": "<function ActorCriticPolicy.forward at 0x7f14aaeb20d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14aaeb2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14aaeb21f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14aaeb2280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14aaeb2310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14aaeb23a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14aaeb2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f14aae99ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 5420, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675492726507803415, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO+CLb+8Bt68x4McP2kcGz7K34a+y3jGPV8yE0B4Z5g+urdHv2xcjD5TXsQ/fIzbve2mGT8zyMC8KrknwFvGVj/8p6i/g4zUOz5XJz8FmtI9OIN6P94njzx7dbi/EZ4EvoBupz7boxPA+qEtP9i/ED/6PIM/vq+6vxrGyL9gu927pR+lvJ30Rj66qgC/tvaeP3+bWL8WO2M8cCc9v5L9nL1WNAXAV/T2vKlhAT8Vxmk9/dyVPx6xujyOt9K/ve6lPZ29or9tbye8M/tbP0nrDr2Abqc+9PHdPl24vL/YvxA/zaslQCto/j4bsEI/mWLBwIcVzz8Y5dQ/0bM7P4DI2j7gmz6/y+2cP96/pz+m8nu/RpwZPzS0Lr1phi7APfVjPUOecL5Hjy5AmKwJvwrMM7/KQSC/FeRJQBMPl74uVHO9gG6nPtujE8D6oS0/2L8QPwDDOD+XogM8LrshP8NwkrwxooM8ol9ZPrkavT8K3Iq+MzZav7rg9TsjcMQ/5LdgvV7tGT8ZKIO9e/Gbvxo2qL7Vt6e/cm3TuarL9D6eFF49jdl5P5kLbLvM65W+VN22vIBupz7boxPA+qEtP9i/ED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADjpHS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcRLSPQAAAACuO+O/AAAAAMGQ8rwAAAAAYtjnPwAAAADoM6E9AAAAAIMJ4z8AAAAAlDXQPQAAAAB2FOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXAUMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGTsgj0AAAAA8hjkvwAAAACVJ6U9AAAAALwz9j8AAAAA1V58vQAAAAAX5+k/AAAAAJIDEL4AAAAAjsbZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUfQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAx18q8AAAAAEHN8L8AAAAAst6MPQAAAABfFOk/AAAAAAUbpj0AAAAAncX0PwAAAABjz0k9AAAAAJdy378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARq/o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA53EQvgAAAAAY8/i/AAAAAJ9a770AAAAA0Y7mPwAAAADv/Mi8AAAAAIHQ6T8AAAAApDORvQAAAADCC/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.997296, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCNajWTX8SMAWyUTSQCjAF0lEdAOlC2c8TzunV9lChoBkdAU/W8ujASF2gHS4toCEdAOzHHJcPe6HV9lChoBkdAeTcLThHby2gHTegDaAhHQD0c+qzZ6D51fZQoaAZHQHNjHHim2stoB03oA2gIR0A9HVj7Q9iddX2UKGgGR0B2lFR/EwWWaAdN6ANoCEdAPR2bsniNsHV9lChoBkdAanXgCOmzjWgHTZkBaAhHQD28figkC3h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 169, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 910.4160694858954, "std_reward": 431.8744732013117, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T04:43:05.503136"}
 
1
+ {"mean_reward": 370.6286256085732, "std_reward": 94.68196170983256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T06:43:55.232870"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7b4c6b85f12c02bce59a5cbb45c237dc3ebd99873eaac4d47e469000cbfa824
3
- size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039413079190b854739752ffe7f592a6f710e3f409d82d74ff1a4530bbdb2d99
3
+ size 2170