Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- marsyas/gtzan
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
base_model:
|
10 |
+
- ntu-spml/distilhubert
|
11 |
+
pipeline_tag: audio-classification
|
12 |
+
---
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
|
18 |
+
<!-- Provide a longer summary of what this model is. -->
|
19 |
+
DistilHuBERT by NTU Speech Processing & Machine Learning Lab
|
20 |
+
|
21 |
+
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
22 |
+
|
23 |
+
Note: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out this blog for more in-detail explanation of how to fine-tune the model.
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
### Model Architecture and Objective
|
28 |
+
|
29 |
+
HubertForSequenceClassification(
|
30 |
+
(hubert): HubertModel(
|
31 |
+
(feature_extractor): HubertFeatureEncoder(
|
32 |
+
(conv_layers): ModuleList(
|
33 |
+
(0): HubertGroupNormConvLayer(
|
34 |
+
(conv): Conv1d(1, 512, kernel_size=(10,), stride=(5,), bias=False)
|
35 |
+
(activation): GELUActivation()
|
36 |
+
(layer_norm): GroupNorm(512, 512, eps=1e-05, affine=True)
|
37 |
+
)
|
38 |
+
(1-4): 4 x HubertNoLayerNormConvLayer(
|
39 |
+
(conv): Conv1d(512, 512, kernel_size=(3,), stride=(2,), bias=False)
|
40 |
+
(activation): GELUActivation()
|
41 |
+
)
|
42 |
+
(5-6): 2 x HubertNoLayerNormConvLayer(
|
43 |
+
(conv): Conv1d(512, 512, kernel_size=(2,), stride=(2,), bias=False)
|
44 |
+
(activation): GELUActivation()
|
45 |
+
)
|
46 |
+
)
|
47 |
+
)
|
48 |
+
(feature_projection): HubertFeatureProjection(
|
49 |
+
(projection): Linear(in_features=512, out_features=768, bias=True)
|
50 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
51 |
+
)
|
52 |
+
(encoder): HubertEncoder(
|
53 |
+
(pos_conv_embed): HubertPositionalConvEmbedding(
|
54 |
+
(conv): ParametrizedConv1d(
|
55 |
+
768, 768, kernel_size=(128,), stride=(1,), padding=(64,), groups=16
|
56 |
+
(parametrizations): ModuleDict(
|
57 |
+
(weight): ParametrizationList(
|
58 |
+
(0): _WeightNorm()
|
59 |
+
)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(padding): HubertSamePadLayer()
|
63 |
+
(activation): GELUActivation()
|
64 |
+
)
|
65 |
+
(layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
(layers): ModuleList(
|
68 |
+
(0-1): 2 x HubertEncoderLayer(
|
69 |
+
(attention): HubertSdpaAttention(
|
70 |
+
(k_proj): Linear(in_features=768, out_features=768, bias=True)
|
71 |
+
(v_proj): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(q_proj): Linear(in_features=768, out_features=768, bias=True)
|
73 |
+
(out_proj): Linear(in_features=768, out_features=768, bias=True)
|
74 |
+
)
|
75 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
76 |
+
(layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
77 |
+
(feed_forward): HubertFeedForward(
|
78 |
+
(intermediate_dropout): Dropout(p=0.1, inplace=False)
|
79 |
+
(intermediate_dense): Linear(in_features=768, out_features=3072, bias=True)
|
80 |
+
(intermediate_act_fn): GELUActivation()
|
81 |
+
(output_dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(output_dropout): Dropout(p=0.1, inplace=False)
|
83 |
+
)
|
84 |
+
(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
85 |
+
)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
)
|
89 |
+
(projector): Linear(in_features=768, out_features=256, bias=True)
|
90 |
+
(classifier): Linear(in_features=256, out_features=10, bias=True)
|
91 |
+
)
|