File size: 1,653 Bytes
8a97d04 75ec169 8a97d04 5b2bbc4 8a97d04 3554c5e 8a97d04 a6d7890 8a97d04 dd3ac8b a6d7890 dd3ac8b 8a97d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: mit
language:
- en
tags:
- medical
- radiology
model-index:
- name: rate-ner-rad
results: []
widget:
- text: No focal enhancing brain parenchymal lesion.
example_title: Example in radiopaedia
pipeline_tag: token-classification
---
# RaTE-NER-Deberta
This model is a fine-tuned version of [DeBERTa](https://huggingface.co/microsoft/deberta-v3-base) on the [RaTE-NER](https://huggingface.co/datasets/Angelakeke/RaTE-NER/) dataset.
## Model description
This model is trained to serve the RaTEScore metric, if you are interested in our pipeline, please refer to our [paper](https://angelakeke.github.io/RaTEScore/) and [Github](https://github.com/Angelakeke/RaTEScore).
This model also can be used to extract **Abnormality, Non-Abnormality, Anatomy, Disease, Non-Disease**
in medical radiology reports.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
ner_labels = ['B-ABNORMALITY', 'I-ABNORMALITY', 'B-NON-ABNORMALITY', 'I-NON-ABNORMALITY', 'B-DISEASE', 'I-DISEASE', 'B-NON-DISEASE', 'I-NON-DISEASE', 'B-ANATOMY', 'I-ANATOMY', 'O']
tokenizer = AutoTokenizer.from_pretrained("Angelakeke/RaTE-NER-Deberta")
model = AutoModelForTokenClassification.from_pretrained("Angelakeke/RaTE-NER-Deberta",
num_labels=len(ner_labels),
ignore_mismatched_sizes=True,
)
```
## Author
Author: [Weike Zhao](https://angelakeke.github.io/)
If you have any questions, please feel free to contact [email protected].
## Citation
```
```
|