Create README.md
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,361 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            tags:
         
     | 
| 3 | 
         
            +
            - hunyuan
         
     | 
| 4 | 
         
            +
            - eagle3
         
     | 
| 5 | 
         
            +
            - eagle
         
     | 
| 6 | 
         
            +
            ---
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            <p align="center">
         
     | 
| 9 | 
         
            +
              <picture>
         
     | 
| 10 | 
         
            +
                <source media="(prefers-color-scheme: dark)" srcset="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo_light.png?raw=true">
         
     | 
| 11 | 
         
            +
                <img alt="AngelSlim" src="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo.png?raw=true" width=55%>
         
     | 
| 12 | 
         
            +
              </picture>
         
     | 
| 13 | 
         
            +
            </p>
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            <h3 align="center">
         
     | 
| 16 | 
         
            +
            Dedicated to building a more intuitive, comprehensive, and efficient LLMs compression toolkit.
         
     | 
| 17 | 
         
            +
            </h3>
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            <p align="center">
         
     | 
| 20 | 
         
            +
                      📖 <a href="https://angelslim.readthedocs.io/">Documentation</a>   |   🤗 <a href="https://huggingface.co/AngelSlim">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/AngelSlim">ModelScope</a>   |   💬 <a href="./docs/source/assets/angel_slim_wechat.png">WeChat</a>
         
     | 
| 21 | 
         
            +
            <br>
         
     | 
| 22 | 
         
            +
            </p>
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            ## Table of Contents
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            - [Latest Updates](#latest-updates)
         
     | 
| 28 | 
         
            +
            - [Key Features](#key-features)
         
     | 
| 29 | 
         
            +
            - [Supported Models](#supported-models)
         
     | 
| 30 | 
         
            +
            - [How to Use](#how-to-use)
         
     | 
| 31 | 
         
            +
              - [Install AngelSlim](#install-angelslim)
         
     | 
| 32 | 
         
            +
              - [Quick Start](#quick-start)
         
     | 
| 33 | 
         
            +
              - [deployment & Evaluation](#deployment)
         
     | 
| 34 | 
         
            +
            - [Benchmark](#benchmark)
         
     | 
| 35 | 
         
            +
            - [License](#license)
         
     | 
| 36 | 
         
            +
            - [Citation](#citation)
         
     | 
| 37 | 
         
            +
            - [Technical Discussion](#technical-discussion)
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            ## 📣Latest Updates
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            - [25/07/04] We now support quantization for Hunyuan/Qwen2.5/Qwen3/DeepSeek-R1-Distill-Qwen and other models, including INT8/FP8/INT4 algorithms.
         
     | 
| 42 | 
         
            +
                          We also opensource Qwen3-8B`s Eagle3 model weight.
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            Coming soon:
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            - [ ] Support W4A8 quantization for DeepSeek-R1.
         
     | 
| 47 | 
         
            +
            - [ ] Support quantization for multimodal models like Qwen-VL.
         
     | 
| 48 | 
         
            +
            - [ ] Release of new algorithm for speculative sampling.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            ## 🌟Key Features
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            - **Highly Integrated**: This toolkit integrates mainstream compression algorithms into a unified framework, offering developers one-click access with exceptional ease of use.
         
     | 
| 53 | 
         
            +
            - **Continuous Innovation**: Beyond integrating widely-used industry algorithms, we are continuously researching better compression algorithms, which will be gradually open-sourced in the future.
         
     | 
| 54 | 
         
            +
            - **Performance-Driven**: We continuously optimize end-to-end performance in model compression workflows and algorithm deployment, such as enabling quantization of models like Qwen3-235B and DeepSeek-R1 on a single GPU.
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            ## 💼Supported Models
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            ### Quantization
         
     | 
| 59 | 
         
            +
            Currently supports the following LLMs, including Hunyuan-Dense, Hunyuan-MoE, Qwen3-Dense, Qwen3-MoE, Qwen2.5, DeepSeek-R1 distilled Qwen models, and QwQ::
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            | Model | FP8-Dynamic | FP8-Static | INT8-Dynamic | INT4-GPTQ | INT4-AWQ |
         
     | 
| 62 | 
         
            +
            | --------------------------------------------------------------------------------------------------------------------------- | ----------- | ---------- | ------------ | --------- | -------- |
         
     | 
| 63 | 
         
            +
            | [Hunyuan-Dense](https://huggingface.co/tencent/Hunyuan-7B-Instruct)                                                         | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 64 | 
         
            +
            | [Hunyuan-MoE](https://huggingface.co/collections/tencent/hunyuan-a13b-685ec38e5b46321e3ea7c4be)                             | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 65 | 
         
            +
            | [Qwen3-Dense](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8)                            | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 66 | 
         
            +
            | [Qwen3-MoE](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8)                              | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 67 | 
         
            +
            | [Qwen2.5](https://huggingface.co/collections/AngelSlim/qwen2-25-quant-68652d6cbdf5c0d4b1c4499a)                             | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 68 | 
         
            +
            | [DeepSeek-R1-Distill-Qwen](https://huggingface.co/collections/AngelSlim/deepseek-r1-distill-quant-68652f16a9c206b030b05f7f) | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 69 | 
         
            +
            | [QwQ](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8)                                    | ✅           | ✅          | ✅            | ✅         | ✅        |
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            ### Speculative Decoding
         
     | 
| 72 | 
         
            +
            The Eagle3 weights for the Qwen3 series model are now available.
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            | Qwen3  Models   | Hunyuan Models     |
         
     | 
| 75 | 
         
            +
            | ----------|----------|
         
     | 
| 76 | 
         
            +
            | ✅ [Qwen3-1.7B](https://huggingface.co/AngelSlim/Qwen3-1.7B_eagle3)    |✅ [Hunyuan-1.8B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-1.8B-Instruct_eagle3)    |
         
     | 
| 77 | 
         
            +
            | ✅ [Qwen3-4B](https://huggingface.co/AngelSlim/Qwen3-4B_eagle3)        |✅ [Hunyuan-4B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-4B-Instruct_eagle3)        |
         
     | 
| 78 | 
         
            +
            | ✅ [Qwen3-8B](https://huggingface.co/AngelSlim/Qwen3-8B_eagle3)        |✅ [Hunyuan-7B-Instruct](https://huggingface.co/AngelSlim/Hunyuan-7B-Instruct_eagle3)        |
         
     | 
| 79 | 
         
            +
            | ✅ [Qwen3-14B](https://huggingface.co/AngelSlim/Qwen3-14B_eagle3)      |
         
     | 
| 80 | 
         
            +
            | ✅ [Qwen3-32B](https://huggingface.co/AngelSlim/Qwen3-32B_eagle3)      |
         
     | 
| 81 | 
         
            +
            | ✅ [Qwen3-30B-A3B](https://huggingface.co/AngelSlim/Qwen3-a3B_eagle3)  |
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            ## 🛎️How to Use
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            ### Install AngelSlim
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            We recommend using `pip` to install the latest stable version of `AngelSlim`:
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            ```shell
         
     | 
| 90 | 
         
            +
            pip install angelslim
         
     | 
| 91 | 
         
            +
            ```
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            Alternatively, you can clone the repository and install from source in editable mode:
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            ```shell
         
     | 
| 96 | 
         
            +
            cd AngelSlim && python setup.py install
         
     | 
| 97 | 
         
            +
            ```
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            For more detailed installation instructions, please refer to the [Installation Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/installation.html).
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            ### Quick Start
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            After installing `AngelSlim`, you can quickly start by running the following script to perform static `FP8` quantization on the `Qwen3-1.7B` model:
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            * One-click Start
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
              ```shell
         
     | 
| 108 | 
         
            +
              python3 tools/run.py -c configs/qwen3/fp8_static/qwen3-1_7b_fp8_static.yaml
         
     | 
| 109 | 
         
            +
              ```
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
              This example will load the HuggingFace model and perform activation value calibration using the `dataset` specified in the config file, saving the quantized model weights.
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            * Code-based Start
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
              To perform dynamic `FP8` quantization on `Qwen3-1.7B`:
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
              ```python
         
     | 
| 118 | 
         
            +
              from angelslim.engine import Engine
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
              slim_engine = Engine()
         
     | 
| 121 | 
         
            +
              # Prepare model
         
     | 
| 122 | 
         
            +
              slim_engine.prepare_model(model_name="Qwen", model_path="Qwen/Qwen3-1.7B",)
         
     | 
| 123 | 
         
            +
              # Initialize compressor
         
     | 
| 124 | 
         
            +
              slim_engine.prepare_compressor("PTQ", default_method="fp8_dynamic")
         
     | 
| 125 | 
         
            +
              # Compress model
         
     | 
| 126 | 
         
            +
              slim_engine.run()
         
     | 
| 127 | 
         
            +
              # Save compressed model
         
     | 
| 128 | 
         
            +
              slim_engine.save("./output")
         
     | 
| 129 | 
         
            +
              ```
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            For more details, please refer to the [Quick Start Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/quickstrat.html).
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            ### 🖥️ Deployment and Testing
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            #### 1. API Service Deployment
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            After specifying the quantized model path `MODEL_PATH`, you can deploy an OpenAI-compatible API service using the following LLMs inference frameworks:
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            **vLLM**
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            Use the following script to launch a [vLLM](https://github.com/vllm-project/vllm) server, recommended version `vllm>=0.8.5.post1`. For MOE INT8 quantized models, vllm>=0.9.0 is required.
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
            ```shell
         
     | 
| 145 | 
         
            +
            bash deploy/run_vllm.sh $MODEL_PATH
         
     | 
| 146 | 
         
            +
            ```
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
            **SGLang**
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
            Use the following script to launch a [SGLang](https://github.com/sgl-project/sglang) server, recommended version `sglang>=0.4.6.post1`.
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            ```shell
         
     | 
| 154 | 
         
            +
            bash deploy/run_sglang.sh $MODEL_PATH
         
     | 
| 155 | 
         
            +
            ```
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            #### 2. Service Invocation
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            Invoke requests via [OpenAI's API format](https://platform.openai.com/docs/api-reference/introduction):
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            ```shell
         
     | 
| 162 | 
         
            +
            bash deploy/openai.sh $MODEL_PATH
         
     | 
| 163 | 
         
            +
            ```
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            #### 3. Performance Evaluation
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
            Evaluate the performance of quantized model using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), recommended version`lm-eval>=0.4.8`:
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            ```shell
         
     | 
| 170 | 
         
            +
            bash deploy/lm_eval.sh $MODEL_PATH
         
     | 
| 171 | 
         
            +
            ```
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
            For more detaileds, please refer to the [Deployment Documentation](https://angelslim.readthedocs.io/zh-cn/latest/deployment/deploy.html).
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
            ## 📈 Benchmark
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            ### (1) Quantization
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
            The performance test results for selected models are shown below. For the complete benchmark, refer to the [Benchmark documentation](https://angelslim.readthedocs.io/zh-cn/latest/performance/quantization/benchmarks.html)
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
            #### Hunyuan Series Models
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
            Benchmark results for the `Hunyuan-A13B-Instruct` model with `FP8` and `INT4-GPTQ` quantization algorithms on datasets including `AIME 2024`, `GSM8K`, `BBH`, and `DROP`:
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
            |   Bench   | Hunyuan-A13B-Instruct | Hunyuan-A13B-Instruct-FP8 | Hunyuan-A13B-Instruct-Int4-GPTQ | 
         
     | 
| 187 | 
         
            +
            |:---------:|:---------------------:|:-------------------------:|:-------------------------------:|
         
     | 
| 188 | 
         
            +
            | AIME 2024 |         87.3          |           86.7            |              86.7               |
         
     | 
| 189 | 
         
            +
            |   GSM8K   |         94.39         |           94.01           |              94.24              |
         
     | 
| 190 | 
         
            +
            |    BBH    |         89.1          |           88.34           |              87.91              |
         
     | 
| 191 | 
         
            +
            |   DROP    |         91.1          |           91.1            |              91.05              |
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
            #### Qwen3 Series Models
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
            Benchmark results for Qwen3 series models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU`, `GSM8K`, and `HUMANEVAL`:
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            <table>
         
     | 
| 198 | 
         
            +
              <thead>
         
     | 
| 199 | 
         
            +
                <tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th><th>HUMANEVAL</th></tr>
         
     | 
| 200 | 
         
            +
              </thead>
         
     | 
| 201 | 
         
            +
              <tbody>
         
     | 
| 202 | 
         
            +
                <tr><td rowspan="4">Qwen3-0.6B</td><td>BF16</td><td>45.84</td><td>47.21</td><td>42.99</td><td>19.51</td></tr>
         
     | 
| 203 | 
         
            +
                <tr><td>FP8-Static</td><td>45.99</td><td>46.87</td><td>38.06</td><td>18.90</td></tr>
         
     | 
| 204 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>45.99</td><td>46.93</td><td>38.29</td><td>20.73</td></tr>
         
     | 
| 205 | 
         
            +
                <tr><td>INT8-Dynamic</td><td>45.17</td><td>46.95</td><td>41.17</td><td>21.34</td></tr>
         
     | 
| 206 | 
         
            +
                <tr><td rowspan="6">Qwen3-8B</td><td>BF16</td><td>79.27</td><td>74.78</td><td>87.79</td><td>63.41</td></tr>
         
     | 
| 207 | 
         
            +
                <tr><td>FP8-Static</td><td>78.23</td><td>74.79</td><td>86.96</td><td>62.20</td></tr>
         
     | 
| 208 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>78.45</td><td>74.75</td><td>87.64</td><td>62.80</td></tr>
         
     | 
| 209 | 
         
            +
                <tr><td>INT8-Dynamic</td><td>78.01</td><td>74.84</td><td>86.96</td><td>67.07</td></tr>
         
     | 
| 210 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>77.19</td><td>73.26</td><td>86.43</td><td>62.20</td></tr>
         
     | 
| 211 | 
         
            +
                <tr><td>INT4-AWQ</td><td>76.15</td><td>73.59</td><td>86.96</td><td>63.41</td></tr>
         
     | 
| 212 | 
         
            +
                <tr><td rowspan="6">Qwen3-14B</td><td>BF16</td><td>83.06</td><td>78.90</td><td>88.40</td><td>55.49</td></tr>
         
     | 
| 213 | 
         
            +
                <tr><td>FP8-Static</td><td>82.62</td><td>78.57</td><td>89.46</td><td>57.32</td></tr>
         
     | 
| 214 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>82.24</td><td>78.92</td><td>88.32</td><td>52.44</td></tr>
         
     | 
| 215 | 
         
            +
                <tr><td>INT8-Dynamic</td><td>81.87</td><td>78.13</td><td>86.28</td><td>56.10</td></tr>
         
     | 
| 216 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>81.05</td><td>78.02</td><td>87.34</td><td>57.93</td></tr>
         
     | 
| 217 | 
         
            +
                <tr><td>INT4-AWQ</td><td>82.02</td><td>77.68</td><td>84.23</td><td>61.59</td></tr>
         
     | 
| 218 | 
         
            +
                <tr><td rowspan="5">Qwen3-32B</td><td>BF16</td><td>86.55</td><td>82.00</td><td>74.53</td><td>37.80</td></tr>
         
     | 
| 219 | 
         
            +
                <tr><td>FP8-Static</td><td>86.92</td><td>81.78</td><td>70.20</td><td>39.63</td></tr>
         
     | 
| 220 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>86.55</td><td>81.89</td><td>70.43</td><td>38.41</td></tr>
         
     | 
| 221 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>86.18</td><td>81.01</td><td>-</td><td>43.29</td></tr>
         
     | 
| 222 | 
         
            +
                <tr><td>INT4-AWQ</td><td>86.18</td><td>81.54</td><td>-</td><td>36.59</td></tr>
         
     | 
| 223 | 
         
            +
                <tr><td rowspan="4">Qwen3-30B-A3B</td><td>BF16</td><td>83.66</td><td>79.36</td><td>89.99</td><td>31.71</td></tr>
         
     | 
| 224 | 
         
            +
                <tr><td>FP8-Static</td><td>83.95</td><td>79.47</td><td>89.01</td><td>31.10</td></tr>
         
     | 
| 225 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>84.10</td><td>79.40</td><td>89.16</td><td>32.93</td></tr>
         
     | 
| 226 | 
         
            +
                <tr><td>INT8-Dynamic</td><td>83.36</td><td>79.48</td><td>89.16</td><td>34.15</td></tr>
         
     | 
| 227 | 
         
            +
                <tr><td rowspan="4">Qwen3-235B-A22B</td><td>BF16</td><td>89.60</td><td>86.28</td><td>85.29</td><td>27.44</td></tr>
         
     | 
| 228 | 
         
            +
                <tr><td>FP8-Static</td><td>89.67</td><td>86.19</td><td>86.96</td><td>27.44</td></tr>
         
     | 
| 229 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>89.67</td><td>86.18</td><td>85.22</td><td>28.05</td></tr>
         
     | 
| 230 | 
         
            +
                <tr><td>INT8-Dynamic</td><td>88.93</td><td>86.20</td><td>86.20</td><td>23.78</td></tr>
         
     | 
| 231 | 
         
            +
                <tr><td rowspan="5">QwQ-32B</td><td>BF16</td><td>85.74</td><td>82.03</td><td>73.31</td><td>42.68</td></tr>
         
     | 
| 232 | 
         
            +
                <tr><td>FP8-Static</td><td>85.44</td><td>81.91</td><td>75.36</td><td>42.68</td></tr>
         
     | 
| 233 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>85.07</td><td>81.93</td><td>75.66</td><td>42.07</td></tr>
         
     | 
| 234 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>84.03</td><td>81.26</td><td>68.23</td><td>45.73</td></tr>
         
     | 
| 235 | 
         
            +
                <tr><td>INT4-AWQ</td><td>83.58</td><td>81.01</td><td>68.69</td><td>43.29</td></tr>
         
     | 
| 236 | 
         
            +
              </tbody>
         
     | 
| 237 | 
         
            +
            </table>
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
            #### Other Models
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
            Benchmark results for other models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU` and `GSM8K`:
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
            <table>
         
     | 
| 244 | 
         
            +
              <thead>
         
     | 
| 245 | 
         
            +
                <tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th></tr>
         
     | 
| 246 | 
         
            +
              </thead>
         
     | 
| 247 | 
         
            +
              <tbody>
         
     | 
| 248 | 
         
            +
                <tr><td rowspan="3">Qwen2.5-1.5B-Instruct</td><td>BF16</td><td>67.01</td><td>60.05</td><td>54.28</td></tr>
         
     | 
| 249 | 
         
            +
                <tr><td>FP8-Static</td><td>66.27</td><td>60.23</td><td>-</td></tr>
         
     | 
| 250 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>66.79</td><td>60.08</td><td>51.71</td></tr>
         
     | 
| 251 | 
         
            +
                <tr><td rowspan="5">Qwen2.5-7B-Instruct</td><td>BF16</td><td>81.20</td><td>74.55</td><td>79.98</td></tr>
         
     | 
| 252 | 
         
            +
                <tr><td>FP8-Static</td><td>81.13</td><td>74.03</td><td>79.30</td></tr>
         
     | 
| 253 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>80.31</td><td>74.07</td><td>79.00</td></tr>
         
     | 
| 254 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>79.05</td><td>73.05</td><td>74.75</td></tr>
         
     | 
| 255 | 
         
            +
                <tr><td>INT4-AWQ</td><td>79.35</td><td>73.22</td><td>79.38</td></tr>
         
     | 
| 256 | 
         
            +
                <tr><td rowspan="5">Qwen2.5-32B-Instruct</td><td>BF16</td><td>87.30</td><td>83.21</td><td>81.73</td></tr>
         
     | 
| 257 | 
         
            +
                <tr><td>FP8-Static</td><td>87.59</td><td>83.08</td><td>81.58</td></tr>
         
     | 
| 258 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>87.30</td><td>83.04</td><td>81.58</td></tr>
         
     | 
| 259 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>86.70</td><td>82.45</td><td>82.03</td></tr>
         
     | 
| 260 | 
         
            +
                <tr><td>INT4-AWQ</td><td>87.00</td><td>82.64</td><td>-</td></tr>
         
     | 
| 261 | 
         
            +
                <tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-7B</td><td>BF16</td><td>53.49</td><td>53.80</td><td>75.74</td></tr>
         
     | 
| 262 | 
         
            +
                <tr><td>FP8-Static</td><td>53.57</td><td>54.17</td><td>76.19</td></tr>
         
     | 
| 263 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>52.97</td><td>54.13</td><td>74.15</td></tr>
         
     | 
| 264 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>51.86</td><td>52.44</td><td>75.89</td></tr>
         
     | 
| 265 | 
         
            +
                <tr><td>INT4-AWQ</td><td>53.49</td><td>53.70</td><td>-</td></tr>
         
     | 
| 266 | 
         
            +
                <tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-14B</td><td>BF16</td><td>77.71</td><td>74.28</td><td>85.67</td></tr>
         
     | 
| 267 | 
         
            +
                <tr><td>FP8-Static</td><td>77.56</td><td>74.66</td><td>86.73</td></tr>
         
     | 
| 268 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>76.82</td><td>74.63</td><td>87.11</td></tr>
         
     | 
| 269 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>74.29</td><td>72.37</td><td>84.61</td></tr>
         
     | 
| 270 | 
         
            +
                <tr><td>INT4-AWQ</td><td>74.81</td><td>73.00</td><td>86.05</td></tr>
         
     | 
| 271 | 
         
            +
                <tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-32B</td><td>BF16</td><td>84.18</td><td>80.89</td><td>87.41</td></tr>
         
     | 
| 272 | 
         
            +
                <tr><td>FP8-Static</td><td>83.43</td><td>80.90</td><td>87.57</td></tr>
         
     | 
| 273 | 
         
            +
                <tr><td>FP8-Dynamic</td><td>83.73</td><td>81.10</td><td>86.43</td></tr>
         
     | 
| 274 | 
         
            +
                <tr><td>INT4-GPTQ</td><td>84.10</td><td>79.80</td><td>86.73</td></tr>
         
     | 
| 275 | 
         
            +
                <tr><td>INT4-AWQ</td><td>82.84</td><td>80.15</td><td>87.19</td></tr>
         
     | 
| 276 | 
         
            +
              </tbody>
         
     | 
| 277 | 
         
            +
            </table>
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
            ### (2) Speculative Decoding
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
            #### Qwen3 Series Models
         
     | 
| 282 | 
         
            +
            Benchmark results for Qwen3 series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
            <table>
         
     | 
| 285 | 
         
            +
              <thead>
         
     | 
| 286 | 
         
            +
                <tr>
         
     | 
| 287 | 
         
            +
                    <th> </th><th> </th>
         
     | 
| 288 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">MT-bench</th>
         
     | 
| 289 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">HumanEval</th>
         
     | 
| 290 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">GSM8K</th>
         
     | 
| 291 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">Alpaca</th>
         
     | 
| 292 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">Mean</th></tr>
         
     | 
| 293 | 
         
            +
                <tr><th>Temperature</th><th>Model</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th></tr>
         
     | 
| 294 | 
         
            +
              </thead>
         
     | 
| 295 | 
         
            +
              <tbody>
         
     | 
| 296 | 
         
            +
                <!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=0</strong></td></tr> -->
         
     | 
| 297 | 
         
            +
                <tr><td rowspan="6"><strong>T=0</strong></td>
         
     | 
| 298 | 
         
            +
                <td>Qwen3-1.7B</td><td>2.05x</td><td>2.81</td><td>2.07x</td><td>2.93</td><td>2.11x</td><td>2.98</td><td>1.93x</td><td>2.69</td><td>2.04x</td><td>2.85</td></tr>
         
     | 
| 299 | 
         
            +
                <tr> <td>Qwen3-4B</td><td>2.21x</td><td>3.01</td><td>2.36x</td><td>3.24</td><td>2.42x</td><td>3.13</td><td>2.32x</td><td>2.75</td><td>2.33x</td><td>3.03</td></tr>
         
     | 
| 300 | 
         
            +
                <tr><td>Qwen3-8B</td><td>2.65x</td><td>3.87</td><td>2.64x</td><td>3.82</td><td>2.86x</td><td>4.10</td><td>2.58x</td><td>3.55</td><td>2.68x</td><td>3.83</td></tr>
         
     | 
| 301 | 
         
            +
                <tr><td>Qwen3-14B</td><td>2.42x</td><td>3.38</td><td>2.57x</td><td>3.58</td><td>2.75x</td><td>3.77</td><td>2.27x</td><td>3.11</td><td>2.50x</td><td>3.46</td></tr>
         
     | 
| 302 | 
         
            +
                <tr><td>Qwen3-32B</td><td>2.39x</td><td>2.78</td><td>2.37x</td><td>2.81</td><td>2.47x</td><td>2.92</td><td>2.42x</td><td>2.53</td><td>2.41x</td><td>2.76</td></tr>
         
     | 
| 303 | 
         
            +
                <tr><td>Qwen3-30B-A3B</td><td>2.84x</td><td>3.63</td><td>2.27x</td><td>3.09</td><td>2.64x</td><td>3.42</td><td>2.83x</td><td>3.56</td><td>2.64x</td><td>3.42</td></tr>
         
     | 
| 304 | 
         
            +
                <!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=1</strong></td></tr> -->
         
     | 
| 305 | 
         
            +
                <tr><td rowspan="6"><strong>T=1</strong></td>
         
     | 
| 306 | 
         
            +
                <td>Qwen3-1.7B</td><td>1.74x</td><td>2.53</td><td>1.86x</td><td>2.70</td><td>1.82x</td><td>2.69</td><td>1.72x</td><td>2.46</td><td>1.93x</td><td>2.60</td></tr>
         
     | 
| 307 | 
         
            +
                <tr><td>Qwen3-4B</td><td>1.93x</td><td>2.60</td><td>2.00x</td><td>2.84</td><td>2.11x</td><td>2.82</td><td>2.34x</td><td>2.50</td><td>1.75x</td><td>2.69</td></tr>
         
     | 
| 308 | 
         
            +
                <tr><td>Qwen3-8B</td><td>1.91x</td><td>2.84</td><td>2.07x</td><td>3.05</td><td>2.34x</td><td>3.26</td><td>2.09x</td><td>2.92</td><td>2.10x</td><td>3.02</td></tr>
         
     | 
| 309 | 
         
            +
                <tr><td>Qwen3-14B</td><td>1.81x</td><td>2.58</td><td>1.96x</td><td>2.81</td><td>2.16x</td><td>3.09</td><td>1.76x</td><td>2.49</td><td>1.92x</td><td>2.74</td></tr>
         
     | 
| 310 | 
         
            +
                <tr><td>Qwen3-32B</td><td>1.62x</td><td>1.91</td><td>1.71x</td><td>2.05</td><td>1.78x</td><td>2.10</td><td>1.80x</td><td>1.95</td><td>1.62x</td><td>2.00</td></tr>
         
     | 
| 311 | 
         
            +
                <tr><td>Qwen3-30B-A3B</td><td>1.91x</td><td>2.46</td><td>2.00x</td><td>2.64</td><td>1.90x</td><td>2.53</td><td>1.80x</td><td>2.32</td><td>1.90x</td><td>2.48</td></tr>
         
     | 
| 312 | 
         
            +
              </tbody>
         
     | 
| 313 | 
         
            +
            </table>
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
            #### Hunyuan Series Models
         
     | 
| 316 | 
         
            +
            Benchmark results for Hunyuan series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
            <table>
         
     | 
| 319 | 
         
            +
              <thead>
         
     | 
| 320 | 
         
            +
                <tr>
         
     | 
| 321 | 
         
            +
                    <th> </th><th> </th>
         
     | 
| 322 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">MT-bench</th>
         
     | 
| 323 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">HumanEval</th>
         
     | 
| 324 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">GSM8K</th>
         
     | 
| 325 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">Alpaca</th>
         
     | 
| 326 | 
         
            +
                    <th colspan="2" style="text-align: center; vertical-align: middle;">Mean</th></tr>
         
     | 
| 327 | 
         
            +
                <tr><th>Temperature</th><th>Model</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th><th>Speedup</th><th>τ</th></tr>
         
     | 
| 328 | 
         
            +
              </thead>
         
     | 
| 329 | 
         
            +
              <tbody>
         
     | 
| 330 | 
         
            +
                <!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=0</strong></td></tr> -->
         
     | 
| 331 | 
         
            +
                <tr><td rowspan="3"><strong>T=0</strong></td>
         
     | 
| 332 | 
         
            +
                <td>Hunyuan-1.8B-Instruct</td><td>1.97x</td><td>2.90</td><td>2.58x</td><td>3.73</td><td>2.61x</td><td>3.71</td><td>1.71x</td><td>2.43</td><td>2.22x</td><td>3.19</td></tr>
         
     | 
| 333 | 
         
            +
                <tr> <td>Hunyuan-4B-Instruct</td><td>1.77x</td><td>2.60</td><td>2.64x</td><td>3.35</td><td>2.14x</td><td>3.17</td><td>1.72x</td><td>2.57</td><td>2.07x</td><td>2.92</td></tr>
         
     | 
| 334 | 
         
            +
                <tr><td>Hunyuan-7B-Instruct</td><td>2.22x</td><td>3.58</td><td>3.59x</td><td>5.47</td><td>2.96x</td><td>4.68</td><td>1.64x</td><td>2.56</td><td>2.60x</td><td>4.07</td></tr>
         
     | 
| 335 | 
         
            +
                <!-- <tr><td colspan="12" style="text-align: center; vertical-align: middle;"><strong>Temperature=1</strong></td></tr> -->
         
     | 
| 336 | 
         
            +
                <tr><td rowspan="3"><strong>T=1</strong></td>
         
     | 
| 337 | 
         
            +
                <td>Hunyuan-1.8B-Instruct</td><td>1.58x</td><td>2.36</td><td>2.35x</td><td>3.56</td><td>2.23x</td><td>3.38</td><td>1.26x</td><td>1.87</td><td>1.86x</td><td>2.79</td></tr>
         
     | 
| 338 | 
         
            +
                <tr><td>Hunyuan-4B-Instruct</td><td>1.36x</td><td>2.05</td><td>1.97x</td><td>2.86</td><td>1.72x</td><td>2.68</td><td>1.14x</td><td>1.76</td><td>1.55x</td><td>2.34</td></tr>
         
     | 
| 339 | 
         
            +
                <tr><td>Hunyuan-7B-Instruct</td><td>1.90x</td><td>3.11</td><td>3.12x</td><td>5.09</td><td>2.74x</td><td>4.34</td><td>1.47x</td><td>2.39</td><td>2.31x</td><td>3.73</td></tr>
         
     | 
| 340 | 
         
            +
              </tbody>
         
     | 
| 341 | 
         
            +
            </table>
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
            ## 📝 License
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
            The code for this project is open-sourced under the [License for AngelSlim](LICENSE).
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
            ## 🔗 Citation
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
            ```
         
     | 
| 350 | 
         
            +
            @software{AngelSlim2025,
         
     | 
| 351 | 
         
            +
                title={{AngelSlim}},
         
     | 
| 352 | 
         
            +
                author={Tencent AngelSlim Project Contributors},
         
     | 
| 353 | 
         
            +
                year={2025},
         
     | 
| 354 | 
         
            +
                month={6},
         
     | 
| 355 | 
         
            +
                url={https://github.com/Tencent/AngelSlim},
         
     | 
| 356 | 
         
            +
            }
         
     | 
| 357 | 
         
            +
            ```
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
            ## 💬 Technical Discussion
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
            * AngelSlim is continuously iterating and new features will be released soon. If you have any questions or suggestions, please open an issue on GitHub or join our [WeChat technical discussion group](https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/angel_slim_wechat.png?raw=true).
         
     |