add REFINED-version export without flash attention
Browse files- camie_refined_no_flash.onnx +3 -0
- infer-refined.py +129 -0
camie_refined_no_flash.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:415ced374b9387cd438b05438f55a352416b307d8c6160972284f8ea240f9410
|
| 3 |
+
size 1696444276
|
infer-refined.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime as ort
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
def preprocess_image(img_path, target_size=512, keep_aspect=True):
|
| 7 |
+
"""
|
| 8 |
+
Load an image from img_path, convert to RGB,
|
| 9 |
+
and resize/pad to (target_size, target_size).
|
| 10 |
+
Scales pixel values to [0,1] and returns a (1,3,target_size,target_size) float32 array.
|
| 11 |
+
"""
|
| 12 |
+
img = Image.open(img_path).convert("RGB")
|
| 13 |
+
|
| 14 |
+
if keep_aspect:
|
| 15 |
+
# Preserve aspect ratio, pad black
|
| 16 |
+
w, h = img.size
|
| 17 |
+
aspect = w / h
|
| 18 |
+
if aspect > 1:
|
| 19 |
+
new_w = target_size
|
| 20 |
+
new_h = int(new_w / aspect)
|
| 21 |
+
else:
|
| 22 |
+
new_h = target_size
|
| 23 |
+
new_w = int(new_h * aspect)
|
| 24 |
+
|
| 25 |
+
# Resize with Lanczos
|
| 26 |
+
img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 27 |
+
# Pad to a square
|
| 28 |
+
background = Image.new("RGB", (target_size, target_size), (0, 0, 0))
|
| 29 |
+
paste_x = (target_size - new_w) // 2
|
| 30 |
+
paste_y = (target_size - new_h) // 2
|
| 31 |
+
background.paste(img, (paste_x, paste_y))
|
| 32 |
+
img = background
|
| 33 |
+
else:
|
| 34 |
+
# simple direct resize to 512x512
|
| 35 |
+
img = img.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
| 36 |
+
|
| 37 |
+
# Convert to numpy array
|
| 38 |
+
arr = np.array(img).astype("float32") / 255.0 # scale to [0,1]
|
| 39 |
+
# Transpose from HWC -> CHW
|
| 40 |
+
arr = np.transpose(arr, (2, 0, 1))
|
| 41 |
+
# Add batch dimension: (1,3,512,512)
|
| 42 |
+
arr = np.expand_dims(arr, axis=0)
|
| 43 |
+
return arr
|
| 44 |
+
|
| 45 |
+
def onnx_inference(img_paths,
|
| 46 |
+
onnx_path="camie_refined_no_flash.onnx",
|
| 47 |
+
threshold=0.325,
|
| 48 |
+
metadata_file="metadata.json"):
|
| 49 |
+
"""
|
| 50 |
+
Loads the ONNX model, runs inference on a list of image paths,
|
| 51 |
+
and applies an optional threshold to produce final predictions.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
img_paths: List of paths to images.
|
| 55 |
+
onnx_path: Path to the exported ONNX model file.
|
| 56 |
+
threshold: Probability threshold for deciding if a tag is predicted.
|
| 57 |
+
metadata_file: Path to metadata.json that contains idx_to_tag etc.
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
A list of dicts, each containing:
|
| 61 |
+
{
|
| 62 |
+
"initial_logits": np.ndarray of shape (N_tags,),
|
| 63 |
+
"refined_logits": np.ndarray of shape (N_tags,),
|
| 64 |
+
"predicted_tags": list of tag indices that exceeded threshold,
|
| 65 |
+
...
|
| 66 |
+
}
|
| 67 |
+
one dict per input image.
|
| 68 |
+
"""
|
| 69 |
+
# 1) Initialize ONNX runtime session
|
| 70 |
+
session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
|
| 71 |
+
# Optional: for GPU usage, see if "CUDAExecutionProvider" is available
|
| 72 |
+
# session = ort.InferenceSession(onnx_path, providers=["CUDAExecutionProvider"])
|
| 73 |
+
|
| 74 |
+
# 2) Pre-load metadata
|
| 75 |
+
with open(metadata_file, "r", encoding="utf-8") as f:
|
| 76 |
+
metadata = json.load(f)
|
| 77 |
+
idx_to_tag = metadata["idx_to_tag"] # e.g. { "0": "brown_hair", "1": "blue_eyes", ... }
|
| 78 |
+
|
| 79 |
+
# 3) Preprocess each image into a batch
|
| 80 |
+
batch_tensors = []
|
| 81 |
+
for img_path in img_paths:
|
| 82 |
+
x = preprocess_image(img_path, target_size=512, keep_aspect=True)
|
| 83 |
+
batch_tensors.append(x)
|
| 84 |
+
# Concatenate along the batch dimension => shape (batch_size, 3, 512, 512)
|
| 85 |
+
batch_input = np.concatenate(batch_tensors, axis=0)
|
| 86 |
+
|
| 87 |
+
# 4) Run inference
|
| 88 |
+
input_name = session.get_inputs()[0].name # typically "image"
|
| 89 |
+
outputs = session.run(None, {input_name: batch_input})
|
| 90 |
+
# Typically we get [initial_tags, refined_tags] as output
|
| 91 |
+
initial_preds, refined_preds = outputs # shapes => (batch_size, 70527)
|
| 92 |
+
|
| 93 |
+
# 5) For each image in batch, convert logits to predictions if desired
|
| 94 |
+
batch_results = []
|
| 95 |
+
for i in range(initial_preds.shape[0]):
|
| 96 |
+
# Extract one sample's logits
|
| 97 |
+
init_logit = initial_preds[i, :] # shape (N_tags,)
|
| 98 |
+
ref_logit = refined_preds[i, :] # shape (N_tags,)
|
| 99 |
+
|
| 100 |
+
# Convert to probabilities with sigmoid
|
| 101 |
+
ref_prob = 1.0 / (1.0 + np.exp(-ref_logit))
|
| 102 |
+
|
| 103 |
+
# Threshold
|
| 104 |
+
pred_indices = np.where(ref_prob >= threshold)[0]
|
| 105 |
+
|
| 106 |
+
# Build result for this image
|
| 107 |
+
result_dict = {
|
| 108 |
+
"initial_logits": init_logit,
|
| 109 |
+
"refined_logits": ref_logit,
|
| 110 |
+
"predicted_indices": pred_indices,
|
| 111 |
+
"predicted_tags": [idx_to_tag[str(idx)] for idx in pred_indices] # map index->tag name
|
| 112 |
+
}
|
| 113 |
+
batch_results.append(result_dict)
|
| 114 |
+
|
| 115 |
+
return batch_results
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
# Example usage
|
| 119 |
+
images = ["image1.jpg", "image2.jpg", "image3.jpg"]
|
| 120 |
+
results = onnx_inference(images,
|
| 121 |
+
onnx_path="camie_refined_no_flash.onnx",
|
| 122 |
+
threshold=0.325,
|
| 123 |
+
metadata_file="metadata.json")
|
| 124 |
+
|
| 125 |
+
for i, res in enumerate(results):
|
| 126 |
+
print(f"Image: {images[i]}")
|
| 127 |
+
print(f" # of predicted tags above threshold: {len(res['predicted_indices'])}")
|
| 128 |
+
print(f" Some predicted tags: {res['predicted_tags'][:10]} (Show up to 10)")
|
| 129 |
+
print()
|