--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ro tags: - generated_from_trainer model-index: - name: opus-mt-en-ro-finetuned-src-to-tgt results: [] --- # opus-mt-en-ro-finetuned-src-to-tgt This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 35 | 2.8624 | | No log | 2.0 | 70 | 2.6600 | | No log | 3.0 | 105 | 2.5610 | | No log | 4.0 | 140 | 2.5369 | | No log | 5.0 | 175 | 2.4976 | | No log | 6.0 | 210 | 2.4731 | | No log | 7.0 | 245 | 2.4463 | | No log | 8.0 | 280 | 2.4558 | | No log | 9.0 | 315 | 2.4386 | | No log | 10.0 | 350 | 2.4377 | | No log | 11.0 | 385 | 2.4342 | | No log | 12.0 | 420 | 2.4332 | | No log | 13.0 | 455 | 2.4401 | | No log | 14.0 | 490 | 2.4453 | | 2.3749 | 15.0 | 525 | 2.4237 | | 2.3749 | 16.0 | 560 | 2.4336 | | 2.3749 | 17.0 | 595 | 2.4262 | | 2.3749 | 18.0 | 630 | 2.4340 | | 2.3749 | 19.0 | 665 | 2.4358 | | 2.3749 | 20.0 | 700 | 2.4423 | | 2.3749 | 21.0 | 735 | 2.4370 | | 2.3749 | 22.0 | 770 | 2.4404 | | 2.3749 | 23.0 | 805 | 2.4451 | | 2.3749 | 24.0 | 840 | 2.4482 | | 2.3749 | 25.0 | 875 | 2.4477 | | 2.3749 | 26.0 | 910 | 2.4503 | | 2.3749 | 27.0 | 945 | 2.4533 | | 2.3749 | 28.0 | 980 | 2.4570 | | 2.1075 | 29.0 | 1015 | 2.4564 | | 2.1075 | 30.0 | 1050 | 2.4552 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0