[update] model
Browse files- README.md +363 -363
- config.json +34 -34
- pytorch_model.bin +2 -2
- special_tokens_map.json +0 -7
- tokenizer_config.json +54 -60
README.md
CHANGED
|
@@ -6,7 +6,7 @@ tags:
|
|
| 6 |
- sentence-similarity
|
| 7 |
- mteb
|
| 8 |
model-index:
|
| 9 |
-
- name: tao
|
| 10 |
results:
|
| 11 |
- task:
|
| 12 |
type: STS
|
|
@@ -18,17 +18,17 @@ model-index:
|
|
| 18 |
revision: None
|
| 19 |
metrics:
|
| 20 |
- type: cos_sim_pearson
|
| 21 |
-
value:
|
| 22 |
- type: cos_sim_spearman
|
| 23 |
-
value:
|
| 24 |
- type: euclidean_pearson
|
| 25 |
-
value:
|
| 26 |
- type: euclidean_spearman
|
| 27 |
-
value:
|
| 28 |
- type: manhattan_pearson
|
| 29 |
-
value:
|
| 30 |
- type: manhattan_spearman
|
| 31 |
-
value:
|
| 32 |
- task:
|
| 33 |
type: STS
|
| 34 |
dataset:
|
|
@@ -39,17 +39,17 @@ model-index:
|
|
| 39 |
revision: None
|
| 40 |
metrics:
|
| 41 |
- type: cos_sim_pearson
|
| 42 |
-
value:
|
| 43 |
- type: cos_sim_spearman
|
| 44 |
-
value:
|
| 45 |
- type: euclidean_pearson
|
| 46 |
-
value:
|
| 47 |
- type: euclidean_spearman
|
| 48 |
-
value:
|
| 49 |
- type: manhattan_pearson
|
| 50 |
-
value:
|
| 51 |
- type: manhattan_spearman
|
| 52 |
-
value:
|
| 53 |
- task:
|
| 54 |
type: Classification
|
| 55 |
dataset:
|
|
@@ -60,9 +60,9 @@ model-index:
|
|
| 60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
metrics:
|
| 62 |
- type: accuracy
|
| 63 |
-
value:
|
| 64 |
- type: f1
|
| 65 |
-
value: 39.
|
| 66 |
- task:
|
| 67 |
type: STS
|
| 68 |
dataset:
|
|
@@ -73,17 +73,17 @@ model-index:
|
|
| 73 |
revision: None
|
| 74 |
metrics:
|
| 75 |
- type: cos_sim_pearson
|
| 76 |
-
value:
|
| 77 |
- type: cos_sim_spearman
|
| 78 |
-
value: 65.
|
| 79 |
- type: euclidean_pearson
|
| 80 |
-
value:
|
| 81 |
- type: euclidean_spearman
|
| 82 |
-
value: 65.
|
| 83 |
- type: manhattan_pearson
|
| 84 |
-
value:
|
| 85 |
- type: manhattan_spearman
|
| 86 |
-
value: 65.
|
| 87 |
- task:
|
| 88 |
type: Clustering
|
| 89 |
dataset:
|
|
@@ -94,7 +94,7 @@ model-index:
|
|
| 94 |
revision: None
|
| 95 |
metrics:
|
| 96 |
- type: v_measure
|
| 97 |
-
value: 39.
|
| 98 |
- task:
|
| 99 |
type: Clustering
|
| 100 |
dataset:
|
|
@@ -105,7 +105,7 @@ model-index:
|
|
| 105 |
revision: None
|
| 106 |
metrics:
|
| 107 |
- type: v_measure
|
| 108 |
-
value:
|
| 109 |
- task:
|
| 110 |
type: Reranking
|
| 111 |
dataset:
|
|
@@ -116,9 +116,9 @@ model-index:
|
|
| 116 |
revision: None
|
| 117 |
metrics:
|
| 118 |
- type: map
|
| 119 |
-
value:
|
| 120 |
- type: mrr
|
| 121 |
-
value:
|
| 122 |
- task:
|
| 123 |
type: Reranking
|
| 124 |
dataset:
|
|
@@ -129,9 +129,9 @@ model-index:
|
|
| 129 |
revision: None
|
| 130 |
metrics:
|
| 131 |
- type: map
|
| 132 |
-
value: 85.
|
| 133 |
- type: mrr
|
| 134 |
-
value: 88.
|
| 135 |
- task:
|
| 136 |
type: Retrieval
|
| 137 |
dataset:
|
|
@@ -142,65 +142,65 @@ model-index:
|
|
| 142 |
revision: None
|
| 143 |
metrics:
|
| 144 |
- type: map_at_1
|
| 145 |
-
value: 24.
|
| 146 |
- type: map_at_10
|
| 147 |
-
value: 36.
|
| 148 |
- type: map_at_100
|
| 149 |
-
value: 38.
|
| 150 |
- type: map_at_1000
|
| 151 |
-
value: 38.
|
| 152 |
- type: map_at_3
|
| 153 |
-
value: 32.
|
| 154 |
- type: map_at_5
|
| 155 |
-
value: 34.
|
| 156 |
- type: mrr_at_1
|
| 157 |
-
value: 37.
|
| 158 |
- type: mrr_at_10
|
| 159 |
-
value: 45.
|
| 160 |
- type: mrr_at_100
|
| 161 |
-
value: 46.
|
| 162 |
- type: mrr_at_1000
|
| 163 |
-
value: 46.
|
| 164 |
- type: mrr_at_3
|
| 165 |
-
value: 42.
|
| 166 |
- type: mrr_at_5
|
| 167 |
-
value: 44.
|
| 168 |
- type: ndcg_at_1
|
| 169 |
-
value: 37.
|
| 170 |
- type: ndcg_at_10
|
| 171 |
-
value: 42.
|
| 172 |
- type: ndcg_at_100
|
| 173 |
-
value: 50.
|
| 174 |
- type: ndcg_at_1000
|
| 175 |
-
value: 52.
|
| 176 |
- type: ndcg_at_3
|
| 177 |
-
value: 37.
|
| 178 |
- type: ndcg_at_5
|
| 179 |
-
value: 39.
|
| 180 |
- type: precision_at_1
|
| 181 |
-
value: 37.
|
| 182 |
- type: precision_at_10
|
| 183 |
-
value: 9.
|
| 184 |
- type: precision_at_100
|
| 185 |
-
value: 1.
|
| 186 |
- type: precision_at_1000
|
| 187 |
value: 0.183
|
| 188 |
- type: precision_at_3
|
| 189 |
-
value: 21.
|
| 190 |
- type: precision_at_5
|
| 191 |
-
value: 15.
|
| 192 |
- type: recall_at_1
|
| 193 |
-
value: 24.
|
| 194 |
- type: recall_at_10
|
| 195 |
-
value: 52.
|
| 196 |
- type: recall_at_100
|
| 197 |
-
value: 83.
|
| 198 |
- type: recall_at_1000
|
| 199 |
-
value: 98.
|
| 200 |
- type: recall_at_3
|
| 201 |
-
value: 37.
|
| 202 |
- type: recall_at_5
|
| 203 |
-
value: 43.
|
| 204 |
- task:
|
| 205 |
type: PairClassification
|
| 206 |
dataset:
|
|
@@ -211,51 +211,51 @@ model-index:
|
|
| 211 |
revision: None
|
| 212 |
metrics:
|
| 213 |
- type: cos_sim_accuracy
|
| 214 |
-
value:
|
| 215 |
- type: cos_sim_ap
|
| 216 |
-
value:
|
| 217 |
- type: cos_sim_f1
|
| 218 |
-
value:
|
| 219 |
- type: cos_sim_precision
|
| 220 |
-
value:
|
| 221 |
- type: cos_sim_recall
|
| 222 |
-
value: 87.
|
| 223 |
- type: dot_accuracy
|
| 224 |
-
value:
|
| 225 |
- type: dot_ap
|
| 226 |
-
value:
|
| 227 |
- type: dot_f1
|
| 228 |
-
value:
|
| 229 |
- type: dot_precision
|
| 230 |
-
value:
|
| 231 |
- type: dot_recall
|
| 232 |
-
value: 87.
|
| 233 |
- type: euclidean_accuracy
|
| 234 |
-
value:
|
| 235 |
- type: euclidean_ap
|
| 236 |
-
value:
|
| 237 |
- type: euclidean_f1
|
| 238 |
-
value:
|
| 239 |
- type: euclidean_precision
|
| 240 |
-
value:
|
| 241 |
- type: euclidean_recall
|
| 242 |
-
value: 87.
|
| 243 |
- type: manhattan_accuracy
|
| 244 |
-
value:
|
| 245 |
- type: manhattan_ap
|
| 246 |
-
value:
|
| 247 |
- type: manhattan_f1
|
| 248 |
-
value:
|
| 249 |
- type: manhattan_precision
|
| 250 |
-
value:
|
| 251 |
- type: manhattan_recall
|
| 252 |
-
value:
|
| 253 |
- type: max_accuracy
|
| 254 |
-
value:
|
| 255 |
- type: max_ap
|
| 256 |
-
value:
|
| 257 |
- type: max_f1
|
| 258 |
-
value:
|
| 259 |
- task:
|
| 260 |
type: Retrieval
|
| 261 |
dataset:
|
|
@@ -266,65 +266,65 @@ model-index:
|
|
| 266 |
revision: None
|
| 267 |
metrics:
|
| 268 |
- type: map_at_1
|
| 269 |
-
value:
|
| 270 |
- type: map_at_10
|
| 271 |
-
value: 77.
|
| 272 |
- type: map_at_100
|
| 273 |
-
value:
|
| 274 |
- type: map_at_1000
|
| 275 |
-
value:
|
| 276 |
- type: map_at_3
|
| 277 |
-
value:
|
| 278 |
- type: map_at_5
|
| 279 |
-
value:
|
| 280 |
- type: mrr_at_1
|
| 281 |
-
value:
|
| 282 |
- type: mrr_at_10
|
| 283 |
-
value: 77.
|
| 284 |
- type: mrr_at_100
|
| 285 |
-
value:
|
| 286 |
- type: mrr_at_1000
|
| 287 |
-
value:
|
| 288 |
- type: mrr_at_3
|
| 289 |
-
value:
|
| 290 |
- type: mrr_at_5
|
| 291 |
-
value:
|
| 292 |
- type: ndcg_at_1
|
| 293 |
-
value:
|
| 294 |
- type: ndcg_at_10
|
| 295 |
-
value:
|
| 296 |
- type: ndcg_at_100
|
| 297 |
-
value: 82.
|
| 298 |
- type: ndcg_at_1000
|
| 299 |
-
value:
|
| 300 |
- type: ndcg_at_3
|
| 301 |
-
value:
|
| 302 |
- type: ndcg_at_5
|
| 303 |
-
value:
|
| 304 |
- type: precision_at_1
|
| 305 |
-
value:
|
| 306 |
- type: precision_at_10
|
| 307 |
-
value: 9.
|
| 308 |
- type: precision_at_100
|
| 309 |
-
value:
|
| 310 |
- type: precision_at_1000
|
| 311 |
value: 0.101
|
| 312 |
- type: precision_at_3
|
| 313 |
-
value:
|
| 314 |
- type: precision_at_5
|
| 315 |
-
value: 17.
|
| 316 |
- type: recall_at_1
|
| 317 |
-
value:
|
| 318 |
- type: recall_at_10
|
| 319 |
-
value: 92.
|
| 320 |
- type: recall_at_100
|
| 321 |
-
value:
|
| 322 |
- type: recall_at_1000
|
| 323 |
-
value: 99.
|
| 324 |
- type: recall_at_3
|
| 325 |
-
value: 83.
|
| 326 |
- type: recall_at_5
|
| 327 |
-
value:
|
| 328 |
- task:
|
| 329 |
type: Retrieval
|
| 330 |
dataset:
|
|
@@ -335,65 +335,65 @@ model-index:
|
|
| 335 |
revision: None
|
| 336 |
metrics:
|
| 337 |
- type: map_at_1
|
| 338 |
-
value: 25.
|
| 339 |
- type: map_at_10
|
| 340 |
-
value:
|
| 341 |
- type: map_at_100
|
| 342 |
-
value:
|
| 343 |
- type: map_at_1000
|
| 344 |
-
value:
|
| 345 |
- type: map_at_3
|
| 346 |
-
value:
|
| 347 |
- type: map_at_5
|
| 348 |
-
value:
|
| 349 |
- type: mrr_at_1
|
| 350 |
-
value:
|
| 351 |
- type: mrr_at_10
|
| 352 |
-
value:
|
| 353 |
- type: mrr_at_100
|
| 354 |
-
value:
|
| 355 |
- type: mrr_at_1000
|
| 356 |
-
value:
|
| 357 |
- type: mrr_at_3
|
| 358 |
-
value:
|
| 359 |
- type: mrr_at_5
|
| 360 |
-
value:
|
| 361 |
- type: ndcg_at_1
|
| 362 |
-
value:
|
| 363 |
- type: ndcg_at_10
|
| 364 |
-
value:
|
| 365 |
- type: ndcg_at_100
|
| 366 |
-
value:
|
| 367 |
- type: ndcg_at_1000
|
| 368 |
-
value:
|
| 369 |
- type: ndcg_at_3
|
| 370 |
-
value:
|
| 371 |
- type: ndcg_at_5
|
| 372 |
-
value:
|
| 373 |
- type: precision_at_1
|
| 374 |
-
value:
|
| 375 |
- type: precision_at_10
|
| 376 |
-
value:
|
| 377 |
- type: precision_at_100
|
| 378 |
-
value: 4.
|
| 379 |
- type: precision_at_1000
|
| 380 |
value: 0.48900000000000005
|
| 381 |
- type: precision_at_3
|
| 382 |
-
value:
|
| 383 |
- type: precision_at_5
|
| 384 |
-
value:
|
| 385 |
- type: recall_at_1
|
| 386 |
-
value: 25.
|
| 387 |
- type: recall_at_10
|
| 388 |
-
value:
|
| 389 |
- type: recall_at_100
|
| 390 |
-
value: 97.
|
| 391 |
- type: recall_at_1000
|
| 392 |
-
value: 99.
|
| 393 |
- type: recall_at_3
|
| 394 |
-
value:
|
| 395 |
- type: recall_at_5
|
| 396 |
-
value:
|
| 397 |
- task:
|
| 398 |
type: Retrieval
|
| 399 |
dataset:
|
|
@@ -404,65 +404,65 @@ model-index:
|
|
| 404 |
revision: None
|
| 405 |
metrics:
|
| 406 |
- type: map_at_1
|
| 407 |
-
value:
|
| 408 |
- type: map_at_10
|
| 409 |
-
value:
|
| 410 |
- type: map_at_100
|
| 411 |
-
value:
|
| 412 |
- type: map_at_1000
|
| 413 |
-
value:
|
| 414 |
- type: map_at_3
|
| 415 |
-
value:
|
| 416 |
- type: map_at_5
|
| 417 |
-
value:
|
| 418 |
- type: mrr_at_1
|
| 419 |
-
value:
|
| 420 |
- type: mrr_at_10
|
| 421 |
-
value:
|
| 422 |
- type: mrr_at_100
|
| 423 |
-
value:
|
| 424 |
- type: mrr_at_1000
|
| 425 |
-
value:
|
| 426 |
- type: mrr_at_3
|
| 427 |
-
value:
|
| 428 |
- type: mrr_at_5
|
| 429 |
-
value:
|
| 430 |
- type: ndcg_at_1
|
| 431 |
-
value:
|
| 432 |
- type: ndcg_at_10
|
| 433 |
-
value:
|
| 434 |
- type: ndcg_at_100
|
| 435 |
-
value:
|
| 436 |
- type: ndcg_at_1000
|
| 437 |
-
value:
|
| 438 |
- type: ndcg_at_3
|
| 439 |
-
value:
|
| 440 |
- type: ndcg_at_5
|
| 441 |
-
value:
|
| 442 |
- type: precision_at_1
|
| 443 |
-
value:
|
| 444 |
- type: precision_at_10
|
| 445 |
-
value:
|
| 446 |
- type: precision_at_100
|
| 447 |
-
value: 0.
|
| 448 |
- type: precision_at_1000
|
| 449 |
-
value: 0.
|
| 450 |
- type: precision_at_3
|
| 451 |
-
value: 21.
|
| 452 |
- type: precision_at_5
|
| 453 |
-
value: 14.
|
| 454 |
- type: recall_at_1
|
| 455 |
-
value:
|
| 456 |
- type: recall_at_10
|
| 457 |
-
value:
|
| 458 |
- type: recall_at_100
|
| 459 |
-
value:
|
| 460 |
- type: recall_at_1000
|
| 461 |
-
value: 96.
|
| 462 |
- type: recall_at_3
|
| 463 |
-
value:
|
| 464 |
- type: recall_at_5
|
| 465 |
-
value:
|
| 466 |
- task:
|
| 467 |
type: Classification
|
| 468 |
dataset:
|
|
@@ -473,9 +473,9 @@ model-index:
|
|
| 473 |
revision: None
|
| 474 |
metrics:
|
| 475 |
- type: accuracy
|
| 476 |
-
value:
|
| 477 |
- type: f1
|
| 478 |
-
value:
|
| 479 |
- task:
|
| 480 |
type: Classification
|
| 481 |
dataset:
|
|
@@ -486,11 +486,11 @@ model-index:
|
|
| 486 |
revision: None
|
| 487 |
metrics:
|
| 488 |
- type: accuracy
|
| 489 |
-
value:
|
| 490 |
- type: ap
|
| 491 |
-
value:
|
| 492 |
- type: f1
|
| 493 |
-
value: 81.
|
| 494 |
- task:
|
| 495 |
type: STS
|
| 496 |
dataset:
|
|
@@ -501,17 +501,17 @@ model-index:
|
|
| 501 |
revision: None
|
| 502 |
metrics:
|
| 503 |
- type: cos_sim_pearson
|
| 504 |
-
value:
|
| 505 |
- type: cos_sim_spearman
|
| 506 |
-
value: 77.
|
| 507 |
- type: euclidean_pearson
|
| 508 |
-
value: 76.
|
| 509 |
- type: euclidean_spearman
|
| 510 |
-
value: 77.
|
| 511 |
- type: manhattan_pearson
|
| 512 |
-
value: 76.
|
| 513 |
- type: manhattan_spearman
|
| 514 |
-
value: 77.
|
| 515 |
- task:
|
| 516 |
type: Reranking
|
| 517 |
dataset:
|
|
@@ -522,9 +522,9 @@ model-index:
|
|
| 522 |
revision: None
|
| 523 |
metrics:
|
| 524 |
- type: map
|
| 525 |
-
value:
|
| 526 |
- type: mrr
|
| 527 |
-
value:
|
| 528 |
- task:
|
| 529 |
type: Retrieval
|
| 530 |
dataset:
|
|
@@ -535,65 +535,65 @@ model-index:
|
|
| 535 |
revision: None
|
| 536 |
metrics:
|
| 537 |
- type: map_at_1
|
| 538 |
-
value: 66.
|
| 539 |
- type: map_at_10
|
| 540 |
-
value: 75.
|
| 541 |
- type: map_at_100
|
| 542 |
-
value: 75.
|
| 543 |
- type: map_at_1000
|
| 544 |
-
value: 75.
|
| 545 |
- type: map_at_3
|
| 546 |
-
value: 73.
|
| 547 |
- type: map_at_5
|
| 548 |
-
value:
|
| 549 |
- type: mrr_at_1
|
| 550 |
-
value: 68.
|
| 551 |
- type: mrr_at_10
|
| 552 |
-
value:
|
| 553 |
- type: mrr_at_100
|
| 554 |
-
value:
|
| 555 |
- type: mrr_at_1000
|
| 556 |
-
value:
|
| 557 |
- type: mrr_at_3
|
| 558 |
-
value: 74.
|
| 559 |
- type: mrr_at_5
|
| 560 |
-
value: 75.
|
| 561 |
- type: ndcg_at_1
|
| 562 |
-
value: 68.
|
| 563 |
- type: ndcg_at_10
|
| 564 |
-
value:
|
| 565 |
- type: ndcg_at_100
|
| 566 |
-
value: 80.
|
| 567 |
- type: ndcg_at_1000
|
| 568 |
-
value: 80.
|
| 569 |
- type: ndcg_at_3
|
| 570 |
-
value: 75.
|
| 571 |
- type: ndcg_at_5
|
| 572 |
-
value: 77.
|
| 573 |
- type: precision_at_1
|
| 574 |
-
value: 68.
|
| 575 |
- type: precision_at_10
|
| 576 |
-
value: 9.
|
| 577 |
- type: precision_at_100
|
| 578 |
-
value: 1.
|
| 579 |
- type: precision_at_1000
|
| 580 |
value: 0.105
|
| 581 |
- type: precision_at_3
|
| 582 |
-
value: 28.
|
| 583 |
- type: precision_at_5
|
| 584 |
-
value:
|
| 585 |
- type: recall_at_1
|
| 586 |
-
value: 66.
|
| 587 |
- type: recall_at_10
|
| 588 |
-
value: 89.
|
| 589 |
- type: recall_at_100
|
| 590 |
-
value: 96.
|
| 591 |
- type: recall_at_1000
|
| 592 |
-
value: 98.
|
| 593 |
- type: recall_at_3
|
| 594 |
-
value:
|
| 595 |
- type: recall_at_5
|
| 596 |
-
value:
|
| 597 |
- task:
|
| 598 |
type: Classification
|
| 599 |
dataset:
|
|
@@ -604,9 +604,9 @@ model-index:
|
|
| 604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
metrics:
|
| 606 |
- type: accuracy
|
| 607 |
-
value: 68.
|
| 608 |
- type: f1
|
| 609 |
-
value:
|
| 610 |
- task:
|
| 611 |
type: Classification
|
| 612 |
dataset:
|
|
@@ -617,9 +617,9 @@ model-index:
|
|
| 617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
metrics:
|
| 619 |
- type: accuracy
|
| 620 |
-
value:
|
| 621 |
- type: f1
|
| 622 |
-
value:
|
| 623 |
- task:
|
| 624 |
type: Retrieval
|
| 625 |
dataset:
|
|
@@ -630,65 +630,65 @@ model-index:
|
|
| 630 |
revision: None
|
| 631 |
metrics:
|
| 632 |
- type: map_at_1
|
| 633 |
-
value:
|
| 634 |
- type: map_at_10
|
| 635 |
-
value:
|
| 636 |
- type: map_at_100
|
| 637 |
-
value: 57.
|
| 638 |
- type: map_at_1000
|
| 639 |
-
value: 57.
|
| 640 |
- type: map_at_3
|
| 641 |
-
value: 55.
|
| 642 |
- type: map_at_5
|
| 643 |
-
value: 56.
|
| 644 |
- type: mrr_at_1
|
| 645 |
-
value:
|
| 646 |
- type: mrr_at_10
|
| 647 |
-
value:
|
| 648 |
- type: mrr_at_100
|
| 649 |
-
value: 57.
|
| 650 |
- type: mrr_at_1000
|
| 651 |
-
value: 57.
|
| 652 |
- type: mrr_at_3
|
| 653 |
-
value: 55.
|
| 654 |
- type: mrr_at_5
|
| 655 |
-
value: 56.
|
| 656 |
- type: ndcg_at_1
|
| 657 |
-
value:
|
| 658 |
- type: ndcg_at_10
|
| 659 |
-
value: 59.
|
| 660 |
- type: ndcg_at_100
|
| 661 |
-
value: 62.
|
| 662 |
- type: ndcg_at_1000
|
| 663 |
-
value: 64.
|
| 664 |
- type: ndcg_at_3
|
| 665 |
-
value:
|
| 666 |
- type: ndcg_at_5
|
| 667 |
-
value: 58.
|
| 668 |
- type: precision_at_1
|
| 669 |
-
value:
|
| 670 |
- type: precision_at_10
|
| 671 |
-
value: 6.
|
| 672 |
- type: precision_at_100
|
| 673 |
-
value: 0.
|
| 674 |
- type: precision_at_1000
|
| 675 |
-
value: 0.
|
| 676 |
- type: precision_at_3
|
| 677 |
-
value: 20.
|
| 678 |
- type: precision_at_5
|
| 679 |
-
value: 12.
|
| 680 |
- type: recall_at_1
|
| 681 |
-
value:
|
| 682 |
- type: recall_at_10
|
| 683 |
-
value: 68.
|
| 684 |
- type: recall_at_100
|
| 685 |
-
value:
|
| 686 |
- type: recall_at_1000
|
| 687 |
-
value: 95.
|
| 688 |
- type: recall_at_3
|
| 689 |
-
value: 61.
|
| 690 |
- type: recall_at_5
|
| 691 |
-
value: 64.
|
| 692 |
- task:
|
| 693 |
type: Classification
|
| 694 |
dataset:
|
|
@@ -699,9 +699,9 @@ model-index:
|
|
| 699 |
revision: None
|
| 700 |
metrics:
|
| 701 |
- type: accuracy
|
| 702 |
-
value: 73.
|
| 703 |
- type: f1
|
| 704 |
-
value: 72.
|
| 705 |
- task:
|
| 706 |
type: PairClassification
|
| 707 |
dataset:
|
|
@@ -712,51 +712,51 @@ model-index:
|
|
| 712 |
revision: None
|
| 713 |
metrics:
|
| 714 |
- type: cos_sim_accuracy
|
| 715 |
-
value:
|
| 716 |
- type: cos_sim_ap
|
| 717 |
-
value:
|
| 718 |
- type: cos_sim_f1
|
| 719 |
-
value:
|
| 720 |
- type: cos_sim_precision
|
| 721 |
-
value:
|
| 722 |
- type: cos_sim_recall
|
| 723 |
-
value:
|
| 724 |
- type: dot_accuracy
|
| 725 |
-
value:
|
| 726 |
- type: dot_ap
|
| 727 |
-
value:
|
| 728 |
- type: dot_f1
|
| 729 |
-
value:
|
| 730 |
- type: dot_precision
|
| 731 |
-
value:
|
| 732 |
- type: dot_recall
|
| 733 |
-
value:
|
| 734 |
- type: euclidean_accuracy
|
| 735 |
-
value:
|
| 736 |
- type: euclidean_ap
|
| 737 |
-
value:
|
| 738 |
- type: euclidean_f1
|
| 739 |
-
value:
|
| 740 |
- type: euclidean_precision
|
| 741 |
-
value:
|
| 742 |
- type: euclidean_recall
|
| 743 |
-
value:
|
| 744 |
- type: manhattan_accuracy
|
| 745 |
-
value:
|
| 746 |
- type: manhattan_ap
|
| 747 |
-
value:
|
| 748 |
- type: manhattan_f1
|
| 749 |
-
value:
|
| 750 |
- type: manhattan_precision
|
| 751 |
-
value:
|
| 752 |
- type: manhattan_recall
|
| 753 |
-
value:
|
| 754 |
- type: max_accuracy
|
| 755 |
-
value:
|
| 756 |
- type: max_ap
|
| 757 |
-
value:
|
| 758 |
- type: max_f1
|
| 759 |
-
value:
|
| 760 |
- task:
|
| 761 |
type: Classification
|
| 762 |
dataset:
|
|
@@ -767,11 +767,11 @@ model-index:
|
|
| 767 |
revision: None
|
| 768 |
metrics:
|
| 769 |
- type: accuracy
|
| 770 |
-
value: 91.
|
| 771 |
- type: ap
|
| 772 |
-
value: 89.
|
| 773 |
- type: f1
|
| 774 |
-
value: 91.
|
| 775 |
- task:
|
| 776 |
type: STS
|
| 777 |
dataset:
|
|
@@ -782,17 +782,17 @@ model-index:
|
|
| 782 |
revision: None
|
| 783 |
metrics:
|
| 784 |
- type: cos_sim_pearson
|
| 785 |
-
value:
|
| 786 |
- type: cos_sim_spearman
|
| 787 |
-
value:
|
| 788 |
- type: euclidean_pearson
|
| 789 |
-
value:
|
| 790 |
- type: euclidean_spearman
|
| 791 |
-
value:
|
| 792 |
- type: manhattan_pearson
|
| 793 |
-
value:
|
| 794 |
- type: manhattan_spearman
|
| 795 |
-
value:
|
| 796 |
- task:
|
| 797 |
type: STS
|
| 798 |
dataset:
|
|
@@ -803,17 +803,17 @@ model-index:
|
|
| 803 |
revision: None
|
| 804 |
metrics:
|
| 805 |
- type: cos_sim_pearson
|
| 806 |
-
value:
|
| 807 |
- type: cos_sim_spearman
|
| 808 |
-
value:
|
| 809 |
- type: euclidean_pearson
|
| 810 |
-
value: 37.
|
| 811 |
- type: euclidean_spearman
|
| 812 |
-
value:
|
| 813 |
- type: manhattan_pearson
|
| 814 |
-
value: 37.
|
| 815 |
- type: manhattan_spearman
|
| 816 |
-
value:
|
| 817 |
- task:
|
| 818 |
type: STS
|
| 819 |
dataset:
|
|
@@ -824,17 +824,17 @@ model-index:
|
|
| 824 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 825 |
metrics:
|
| 826 |
- type: cos_sim_pearson
|
| 827 |
-
value:
|
| 828 |
- type: cos_sim_spearman
|
| 829 |
-
value:
|
| 830 |
- type: euclidean_pearson
|
| 831 |
-
value: 67.
|
| 832 |
- type: euclidean_spearman
|
| 833 |
-
value:
|
| 834 |
- type: manhattan_pearson
|
| 835 |
-
value: 67.
|
| 836 |
- type: manhattan_spearman
|
| 837 |
-
value:
|
| 838 |
- task:
|
| 839 |
type: STS
|
| 840 |
dataset:
|
|
@@ -845,17 +845,17 @@ model-index:
|
|
| 845 |
revision: None
|
| 846 |
metrics:
|
| 847 |
- type: cos_sim_pearson
|
| 848 |
-
value: 78.
|
| 849 |
- type: cos_sim_spearman
|
| 850 |
-
value:
|
| 851 |
- type: euclidean_pearson
|
| 852 |
-
value:
|
| 853 |
- type: euclidean_spearman
|
| 854 |
-
value:
|
| 855 |
- type: manhattan_pearson
|
| 856 |
-
value:
|
| 857 |
- type: manhattan_spearman
|
| 858 |
-
value:
|
| 859 |
- task:
|
| 860 |
type: Reranking
|
| 861 |
dataset:
|
|
@@ -866,9 +866,9 @@ model-index:
|
|
| 866 |
revision: None
|
| 867 |
metrics:
|
| 868 |
- type: map
|
| 869 |
-
value: 66.
|
| 870 |
- type: mrr
|
| 871 |
-
value: 76.
|
| 872 |
- task:
|
| 873 |
type: Retrieval
|
| 874 |
dataset:
|
|
@@ -879,65 +879,65 @@ model-index:
|
|
| 879 |
revision: None
|
| 880 |
metrics:
|
| 881 |
- type: map_at_1
|
| 882 |
-
value: 27.
|
| 883 |
- type: map_at_10
|
| 884 |
-
value:
|
| 885 |
- type: map_at_100
|
| 886 |
-
value: 80.
|
| 887 |
- type: map_at_1000
|
| 888 |
-
value: 80.
|
| 889 |
- type: map_at_3
|
| 890 |
-
value:
|
| 891 |
- type: map_at_5
|
| 892 |
-
value: 66.
|
| 893 |
- type: mrr_at_1
|
| 894 |
-
value:
|
| 895 |
- type: mrr_at_10
|
| 896 |
-
value: 92.
|
| 897 |
- type: mrr_at_100
|
| 898 |
-
value: 92.
|
| 899 |
- type: mrr_at_1000
|
| 900 |
-
value: 92.
|
| 901 |
- type: mrr_at_3
|
| 902 |
-
value:
|
| 903 |
- type: mrr_at_5
|
| 904 |
-
value: 92.
|
| 905 |
- type: ndcg_at_1
|
| 906 |
-
value:
|
| 907 |
- type: ndcg_at_10
|
| 908 |
-
value: 84.
|
| 909 |
- type: ndcg_at_100
|
| 910 |
-
value:
|
| 911 |
- type: ndcg_at_1000
|
| 912 |
-
value: 88.
|
| 913 |
- type: ndcg_at_3
|
| 914 |
-
value:
|
| 915 |
- type: ndcg_at_5
|
| 916 |
-
value: 84.
|
| 917 |
- type: precision_at_1
|
| 918 |
-
value:
|
| 919 |
- type: precision_at_10
|
| 920 |
-
value:
|
| 921 |
- type: precision_at_100
|
| 922 |
-
value: 5.
|
| 923 |
- type: precision_at_1000
|
| 924 |
value: 0.516
|
| 925 |
- type: precision_at_3
|
| 926 |
-
value: 75.
|
| 927 |
- type: precision_at_5
|
| 928 |
-
value:
|
| 929 |
- type: recall_at_1
|
| 930 |
-
value: 27.
|
| 931 |
- type: recall_at_10
|
| 932 |
-
value: 83.
|
| 933 |
- type: recall_at_100
|
| 934 |
-
value: 95.
|
| 935 |
- type: recall_at_1000
|
| 936 |
-
value: 98.
|
| 937 |
- type: recall_at_3
|
| 938 |
-
value: 55.
|
| 939 |
- type: recall_at_5
|
| 940 |
-
value: 69.
|
| 941 |
- task:
|
| 942 |
type: Classification
|
| 943 |
dataset:
|
|
@@ -948,9 +948,9 @@ model-index:
|
|
| 948 |
revision: None
|
| 949 |
metrics:
|
| 950 |
- type: accuracy
|
| 951 |
-
value:
|
| 952 |
- type: f1
|
| 953 |
-
value:
|
| 954 |
- task:
|
| 955 |
type: Clustering
|
| 956 |
dataset:
|
|
@@ -961,7 +961,7 @@ model-index:
|
|
| 961 |
revision: None
|
| 962 |
metrics:
|
| 963 |
- type: v_measure
|
| 964 |
-
value:
|
| 965 |
- task:
|
| 966 |
type: Clustering
|
| 967 |
dataset:
|
|
@@ -972,7 +972,7 @@ model-index:
|
|
| 972 |
revision: None
|
| 973 |
metrics:
|
| 974 |
- type: v_measure
|
| 975 |
-
value:
|
| 976 |
- task:
|
| 977 |
type: Retrieval
|
| 978 |
dataset:
|
|
@@ -983,65 +983,65 @@ model-index:
|
|
| 983 |
revision: None
|
| 984 |
metrics:
|
| 985 |
- type: map_at_1
|
| 986 |
-
value:
|
| 987 |
- type: map_at_10
|
| 988 |
-
value:
|
| 989 |
- type: map_at_100
|
| 990 |
-
value:
|
| 991 |
- type: map_at_1000
|
| 992 |
-
value:
|
| 993 |
- type: map_at_3
|
| 994 |
-
value:
|
| 995 |
- type: map_at_5
|
| 996 |
-
value:
|
| 997 |
- type: mrr_at_1
|
| 998 |
-
value:
|
| 999 |
- type: mrr_at_10
|
| 1000 |
-
value:
|
| 1001 |
- type: mrr_at_100
|
| 1002 |
-
value:
|
| 1003 |
- type: mrr_at_1000
|
| 1004 |
-
value:
|
| 1005 |
- type: mrr_at_3
|
| 1006 |
-
value:
|
| 1007 |
- type: mrr_at_5
|
| 1008 |
-
value:
|
| 1009 |
- type: ndcg_at_1
|
| 1010 |
-
value:
|
| 1011 |
- type: ndcg_at_10
|
| 1012 |
-
value:
|
| 1013 |
- type: ndcg_at_100
|
| 1014 |
-
value:
|
| 1015 |
- type: ndcg_at_1000
|
| 1016 |
-
value:
|
| 1017 |
- type: ndcg_at_3
|
| 1018 |
-
value:
|
| 1019 |
- type: ndcg_at_5
|
| 1020 |
-
value:
|
| 1021 |
- type: precision_at_1
|
| 1022 |
-
value:
|
| 1023 |
- type: precision_at_10
|
| 1024 |
-
value: 8.
|
| 1025 |
- type: precision_at_100
|
| 1026 |
-
value: 0.
|
| 1027 |
- type: precision_at_1000
|
| 1028 |
-
value: 0.
|
| 1029 |
- type: precision_at_3
|
| 1030 |
-
value:
|
| 1031 |
- type: precision_at_5
|
| 1032 |
-
value: 15.
|
| 1033 |
- type: recall_at_1
|
| 1034 |
-
value:
|
| 1035 |
- type: recall_at_10
|
| 1036 |
-
value:
|
| 1037 |
- type: recall_at_100
|
| 1038 |
-
value:
|
| 1039 |
- type: recall_at_1000
|
| 1040 |
-
value: 98.
|
| 1041 |
- type: recall_at_3
|
| 1042 |
-
value:
|
| 1043 |
- type: recall_at_5
|
| 1044 |
-
value:
|
| 1045 |
- task:
|
| 1046 |
type: Classification
|
| 1047 |
dataset:
|
|
@@ -1052,11 +1052,11 @@ model-index:
|
|
| 1052 |
revision: None
|
| 1053 |
metrics:
|
| 1054 |
- type: accuracy
|
| 1055 |
-
value:
|
| 1056 |
- type: ap
|
| 1057 |
-
value: 70.
|
| 1058 |
- type: f1
|
| 1059 |
-
value: 85.
|
| 1060 |
---
|
| 1061 |
|
| 1062 |
a try for emebdding model
|
|
|
|
| 6 |
- sentence-similarity
|
| 7 |
- mteb
|
| 8 |
model-index:
|
| 9 |
+
- name: tao
|
| 10 |
results:
|
| 11 |
- task:
|
| 12 |
type: STS
|
|
|
|
| 18 |
revision: None
|
| 19 |
metrics:
|
| 20 |
- type: cos_sim_pearson
|
| 21 |
+
value: 47.33752515292192
|
| 22 |
- type: cos_sim_spearman
|
| 23 |
+
value: 49.940772056837176
|
| 24 |
- type: euclidean_pearson
|
| 25 |
+
value: 48.12147487857213
|
| 26 |
- type: euclidean_spearman
|
| 27 |
+
value: 49.9407519488174
|
| 28 |
- type: manhattan_pearson
|
| 29 |
+
value: 48.07550286372865
|
| 30 |
- type: manhattan_spearman
|
| 31 |
+
value: 49.89535645392862
|
| 32 |
- task:
|
| 33 |
type: STS
|
| 34 |
dataset:
|
|
|
|
| 39 |
revision: None
|
| 40 |
metrics:
|
| 41 |
- type: cos_sim_pearson
|
| 42 |
+
value: 50.976865711125626
|
| 43 |
- type: cos_sim_spearman
|
| 44 |
+
value: 53.113084748593465
|
| 45 |
- type: euclidean_pearson
|
| 46 |
+
value: 55.1209592747571
|
| 47 |
- type: euclidean_spearman
|
| 48 |
+
value: 53.11308362230699
|
| 49 |
- type: manhattan_pearson
|
| 50 |
+
value: 55.09799309322416
|
| 51 |
- type: manhattan_spearman
|
| 52 |
+
value: 53.108059998577076
|
| 53 |
- task:
|
| 54 |
type: Classification
|
| 55 |
dataset:
|
|
|
|
| 60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
metrics:
|
| 62 |
- type: accuracy
|
| 63 |
+
value: 40.812
|
| 64 |
- type: f1
|
| 65 |
+
value: 39.02060856097395
|
| 66 |
- task:
|
| 67 |
type: STS
|
| 68 |
dataset:
|
|
|
|
| 73 |
revision: None
|
| 74 |
metrics:
|
| 75 |
- type: cos_sim_pearson
|
| 76 |
+
value: 62.84336868097746
|
| 77 |
- type: cos_sim_spearman
|
| 78 |
+
value: 65.540605433497
|
| 79 |
- type: euclidean_pearson
|
| 80 |
+
value: 64.08759819387913
|
| 81 |
- type: euclidean_spearman
|
| 82 |
+
value: 65.54060543369363
|
| 83 |
- type: manhattan_pearson
|
| 84 |
+
value: 64.09334283385029
|
| 85 |
- type: manhattan_spearman
|
| 86 |
+
value: 65.55376209169398
|
| 87 |
- task:
|
| 88 |
type: Clustering
|
| 89 |
dataset:
|
|
|
|
| 94 |
revision: None
|
| 95 |
metrics:
|
| 96 |
- type: v_measure
|
| 97 |
+
value: 39.964020691388505
|
| 98 |
- task:
|
| 99 |
type: Clustering
|
| 100 |
dataset:
|
|
|
|
| 105 |
revision: None
|
| 106 |
metrics:
|
| 107 |
- type: v_measure
|
| 108 |
+
value: 38.18628830038994
|
| 109 |
- task:
|
| 110 |
type: Reranking
|
| 111 |
dataset:
|
|
|
|
| 116 |
revision: None
|
| 117 |
metrics:
|
| 118 |
- type: map
|
| 119 |
+
value: 85.34294439514511
|
| 120 |
- type: mrr
|
| 121 |
+
value: 88.03849206349206
|
| 122 |
- task:
|
| 123 |
type: Reranking
|
| 124 |
dataset:
|
|
|
|
| 129 |
revision: None
|
| 130 |
metrics:
|
| 131 |
- type: map
|
| 132 |
+
value: 85.87127698007234
|
| 133 |
- type: mrr
|
| 134 |
+
value: 88.57980158730159
|
| 135 |
- task:
|
| 136 |
type: Retrieval
|
| 137 |
dataset:
|
|
|
|
| 142 |
revision: None
|
| 143 |
metrics:
|
| 144 |
- type: map_at_1
|
| 145 |
+
value: 24.484
|
| 146 |
- type: map_at_10
|
| 147 |
+
value: 36.3
|
| 148 |
- type: map_at_100
|
| 149 |
+
value: 38.181
|
| 150 |
- type: map_at_1000
|
| 151 |
+
value: 38.305
|
| 152 |
- type: map_at_3
|
| 153 |
+
value: 32.39
|
| 154 |
- type: map_at_5
|
| 155 |
+
value: 34.504000000000005
|
| 156 |
- type: mrr_at_1
|
| 157 |
+
value: 37.608999999999995
|
| 158 |
- type: mrr_at_10
|
| 159 |
+
value: 45.348
|
| 160 |
- type: mrr_at_100
|
| 161 |
+
value: 46.375
|
| 162 |
- type: mrr_at_1000
|
| 163 |
+
value: 46.425
|
| 164 |
- type: mrr_at_3
|
| 165 |
+
value: 42.969
|
| 166 |
- type: mrr_at_5
|
| 167 |
+
value: 44.285999999999994
|
| 168 |
- type: ndcg_at_1
|
| 169 |
+
value: 37.608999999999995
|
| 170 |
- type: ndcg_at_10
|
| 171 |
+
value: 42.675999999999995
|
| 172 |
- type: ndcg_at_100
|
| 173 |
+
value: 50.12799999999999
|
| 174 |
- type: ndcg_at_1000
|
| 175 |
+
value: 52.321
|
| 176 |
- type: ndcg_at_3
|
| 177 |
+
value: 37.864
|
| 178 |
- type: ndcg_at_5
|
| 179 |
+
value: 39.701
|
| 180 |
- type: precision_at_1
|
| 181 |
+
value: 37.608999999999995
|
| 182 |
- type: precision_at_10
|
| 183 |
+
value: 9.527
|
| 184 |
- type: precision_at_100
|
| 185 |
+
value: 1.555
|
| 186 |
- type: precision_at_1000
|
| 187 |
value: 0.183
|
| 188 |
- type: precision_at_3
|
| 189 |
+
value: 21.547
|
| 190 |
- type: precision_at_5
|
| 191 |
+
value: 15.504000000000001
|
| 192 |
- type: recall_at_1
|
| 193 |
+
value: 24.484
|
| 194 |
- type: recall_at_10
|
| 195 |
+
value: 52.43299999999999
|
| 196 |
- type: recall_at_100
|
| 197 |
+
value: 83.446
|
| 198 |
- type: recall_at_1000
|
| 199 |
+
value: 98.24199999999999
|
| 200 |
- type: recall_at_3
|
| 201 |
+
value: 37.653
|
| 202 |
- type: recall_at_5
|
| 203 |
+
value: 43.643
|
| 204 |
- task:
|
| 205 |
type: PairClassification
|
| 206 |
dataset:
|
|
|
|
| 211 |
revision: None
|
| 212 |
metrics:
|
| 213 |
- type: cos_sim_accuracy
|
| 214 |
+
value: 77.71497294046902
|
| 215 |
- type: cos_sim_ap
|
| 216 |
+
value: 86.84542027578229
|
| 217 |
- type: cos_sim_f1
|
| 218 |
+
value: 79.31987247608926
|
| 219 |
- type: cos_sim_precision
|
| 220 |
+
value: 72.70601987142022
|
| 221 |
- type: cos_sim_recall
|
| 222 |
+
value: 87.2574234276362
|
| 223 |
- type: dot_accuracy
|
| 224 |
+
value: 77.71497294046902
|
| 225 |
- type: dot_ap
|
| 226 |
+
value: 86.86514752961159
|
| 227 |
- type: dot_f1
|
| 228 |
+
value: 79.31987247608926
|
| 229 |
- type: dot_precision
|
| 230 |
+
value: 72.70601987142022
|
| 231 |
- type: dot_recall
|
| 232 |
+
value: 87.2574234276362
|
| 233 |
- type: euclidean_accuracy
|
| 234 |
+
value: 77.71497294046902
|
| 235 |
- type: euclidean_ap
|
| 236 |
+
value: 86.84541456571337
|
| 237 |
- type: euclidean_f1
|
| 238 |
+
value: 79.31987247608926
|
| 239 |
- type: euclidean_precision
|
| 240 |
+
value: 72.70601987142022
|
| 241 |
- type: euclidean_recall
|
| 242 |
+
value: 87.2574234276362
|
| 243 |
- type: manhattan_accuracy
|
| 244 |
+
value: 77.8111846061335
|
| 245 |
- type: manhattan_ap
|
| 246 |
+
value: 86.81148050422539
|
| 247 |
- type: manhattan_f1
|
| 248 |
+
value: 79.41176470588236
|
| 249 |
- type: manhattan_precision
|
| 250 |
+
value: 72.52173913043478
|
| 251 |
- type: manhattan_recall
|
| 252 |
+
value: 87.74842179097499
|
| 253 |
- type: max_accuracy
|
| 254 |
+
value: 77.8111846061335
|
| 255 |
- type: max_ap
|
| 256 |
+
value: 86.86514752961159
|
| 257 |
- type: max_f1
|
| 258 |
+
value: 79.41176470588236
|
| 259 |
- task:
|
| 260 |
type: Retrieval
|
| 261 |
dataset:
|
|
|
|
| 266 |
revision: None
|
| 267 |
metrics:
|
| 268 |
- type: map_at_1
|
| 269 |
+
value: 68.862
|
| 270 |
- type: map_at_10
|
| 271 |
+
value: 77.079
|
| 272 |
- type: map_at_100
|
| 273 |
+
value: 77.428
|
| 274 |
- type: map_at_1000
|
| 275 |
+
value: 77.432
|
| 276 |
- type: map_at_3
|
| 277 |
+
value: 75.40400000000001
|
| 278 |
- type: map_at_5
|
| 279 |
+
value: 76.227
|
| 280 |
- type: mrr_at_1
|
| 281 |
+
value: 69.02000000000001
|
| 282 |
- type: mrr_at_10
|
| 283 |
+
value: 77.04299999999999
|
| 284 |
- type: mrr_at_100
|
| 285 |
+
value: 77.391
|
| 286 |
- type: mrr_at_1000
|
| 287 |
+
value: 77.395
|
| 288 |
- type: mrr_at_3
|
| 289 |
+
value: 75.44800000000001
|
| 290 |
- type: mrr_at_5
|
| 291 |
+
value: 76.23299999999999
|
| 292 |
- type: ndcg_at_1
|
| 293 |
+
value: 69.02000000000001
|
| 294 |
- type: ndcg_at_10
|
| 295 |
+
value: 80.789
|
| 296 |
- type: ndcg_at_100
|
| 297 |
+
value: 82.27499999999999
|
| 298 |
- type: ndcg_at_1000
|
| 299 |
+
value: 82.381
|
| 300 |
- type: ndcg_at_3
|
| 301 |
+
value: 77.40599999999999
|
| 302 |
- type: ndcg_at_5
|
| 303 |
+
value: 78.87100000000001
|
| 304 |
- type: precision_at_1
|
| 305 |
+
value: 69.02000000000001
|
| 306 |
- type: precision_at_10
|
| 307 |
+
value: 9.336
|
| 308 |
- type: precision_at_100
|
| 309 |
+
value: 0.9990000000000001
|
| 310 |
- type: precision_at_1000
|
| 311 |
value: 0.101
|
| 312 |
- type: precision_at_3
|
| 313 |
+
value: 27.889000000000003
|
| 314 |
- type: precision_at_5
|
| 315 |
+
value: 17.492
|
| 316 |
- type: recall_at_1
|
| 317 |
+
value: 68.862
|
| 318 |
- type: recall_at_10
|
| 319 |
+
value: 92.308
|
| 320 |
- type: recall_at_100
|
| 321 |
+
value: 98.84100000000001
|
| 322 |
- type: recall_at_1000
|
| 323 |
+
value: 99.684
|
| 324 |
- type: recall_at_3
|
| 325 |
+
value: 83.087
|
| 326 |
- type: recall_at_5
|
| 327 |
+
value: 86.617
|
| 328 |
- task:
|
| 329 |
type: Retrieval
|
| 330 |
dataset:
|
|
|
|
| 335 |
revision: None
|
| 336 |
metrics:
|
| 337 |
- type: map_at_1
|
| 338 |
+
value: 25.063999999999997
|
| 339 |
- type: map_at_10
|
| 340 |
+
value: 78.014
|
| 341 |
- type: map_at_100
|
| 342 |
+
value: 81.021
|
| 343 |
- type: map_at_1000
|
| 344 |
+
value: 81.059
|
| 345 |
- type: map_at_3
|
| 346 |
+
value: 53.616
|
| 347 |
- type: map_at_5
|
| 348 |
+
value: 68.00399999999999
|
| 349 |
- type: mrr_at_1
|
| 350 |
+
value: 87.8
|
| 351 |
- type: mrr_at_10
|
| 352 |
+
value: 91.824
|
| 353 |
- type: mrr_at_100
|
| 354 |
+
value: 91.915
|
| 355 |
- type: mrr_at_1000
|
| 356 |
+
value: 91.917
|
| 357 |
- type: mrr_at_3
|
| 358 |
+
value: 91.525
|
| 359 |
- type: mrr_at_5
|
| 360 |
+
value: 91.752
|
| 361 |
- type: ndcg_at_1
|
| 362 |
+
value: 87.8
|
| 363 |
- type: ndcg_at_10
|
| 364 |
+
value: 85.74199999999999
|
| 365 |
- type: ndcg_at_100
|
| 366 |
+
value: 88.82900000000001
|
| 367 |
- type: ndcg_at_1000
|
| 368 |
+
value: 89.208
|
| 369 |
- type: ndcg_at_3
|
| 370 |
+
value: 84.206
|
| 371 |
- type: ndcg_at_5
|
| 372 |
+
value: 83.421
|
| 373 |
- type: precision_at_1
|
| 374 |
+
value: 87.8
|
| 375 |
- type: precision_at_10
|
| 376 |
+
value: 41.325
|
| 377 |
- type: precision_at_100
|
| 378 |
+
value: 4.8
|
| 379 |
- type: precision_at_1000
|
| 380 |
value: 0.48900000000000005
|
| 381 |
- type: precision_at_3
|
| 382 |
+
value: 75.783
|
| 383 |
- type: precision_at_5
|
| 384 |
+
value: 64.25999999999999
|
| 385 |
- type: recall_at_1
|
| 386 |
+
value: 25.063999999999997
|
| 387 |
- type: recall_at_10
|
| 388 |
+
value: 87.324
|
| 389 |
- type: recall_at_100
|
| 390 |
+
value: 97.261
|
| 391 |
- type: recall_at_1000
|
| 392 |
+
value: 99.309
|
| 393 |
- type: recall_at_3
|
| 394 |
+
value: 56.281000000000006
|
| 395 |
- type: recall_at_5
|
| 396 |
+
value: 73.467
|
| 397 |
- task:
|
| 398 |
type: Retrieval
|
| 399 |
dataset:
|
|
|
|
| 404 |
revision: None
|
| 405 |
metrics:
|
| 406 |
- type: map_at_1
|
| 407 |
+
value: 46.800000000000004
|
| 408 |
- type: map_at_10
|
| 409 |
+
value: 56.887
|
| 410 |
- type: map_at_100
|
| 411 |
+
value: 57.556
|
| 412 |
- type: map_at_1000
|
| 413 |
+
value: 57.582
|
| 414 |
- type: map_at_3
|
| 415 |
+
value: 54.15
|
| 416 |
- type: map_at_5
|
| 417 |
+
value: 55.825
|
| 418 |
- type: mrr_at_1
|
| 419 |
+
value: 46.800000000000004
|
| 420 |
- type: mrr_at_10
|
| 421 |
+
value: 56.887
|
| 422 |
- type: mrr_at_100
|
| 423 |
+
value: 57.556
|
| 424 |
- type: mrr_at_1000
|
| 425 |
+
value: 57.582
|
| 426 |
- type: mrr_at_3
|
| 427 |
+
value: 54.15
|
| 428 |
- type: mrr_at_5
|
| 429 |
+
value: 55.825
|
| 430 |
- type: ndcg_at_1
|
| 431 |
+
value: 46.800000000000004
|
| 432 |
- type: ndcg_at_10
|
| 433 |
+
value: 62.061
|
| 434 |
- type: ndcg_at_100
|
| 435 |
+
value: 65.042
|
| 436 |
- type: ndcg_at_1000
|
| 437 |
+
value: 65.658
|
| 438 |
- type: ndcg_at_3
|
| 439 |
+
value: 56.52700000000001
|
| 440 |
- type: ndcg_at_5
|
| 441 |
+
value: 59.518
|
| 442 |
- type: precision_at_1
|
| 443 |
+
value: 46.800000000000004
|
| 444 |
- type: precision_at_10
|
| 445 |
+
value: 7.84
|
| 446 |
- type: precision_at_100
|
| 447 |
+
value: 0.9169999999999999
|
| 448 |
- type: precision_at_1000
|
| 449 |
+
value: 0.096
|
| 450 |
- type: precision_at_3
|
| 451 |
+
value: 21.133
|
| 452 |
- type: precision_at_5
|
| 453 |
+
value: 14.12
|
| 454 |
- type: recall_at_1
|
| 455 |
+
value: 46.800000000000004
|
| 456 |
- type: recall_at_10
|
| 457 |
+
value: 78.4
|
| 458 |
- type: recall_at_100
|
| 459 |
+
value: 91.7
|
| 460 |
- type: recall_at_1000
|
| 461 |
+
value: 96.39999999999999
|
| 462 |
- type: recall_at_3
|
| 463 |
+
value: 63.4
|
| 464 |
- type: recall_at_5
|
| 465 |
+
value: 70.6
|
| 466 |
- task:
|
| 467 |
type: Classification
|
| 468 |
dataset:
|
|
|
|
| 473 |
revision: None
|
| 474 |
metrics:
|
| 475 |
- type: accuracy
|
| 476 |
+
value: 48.010773374374764
|
| 477 |
- type: f1
|
| 478 |
+
value: 35.25314495210735
|
| 479 |
- task:
|
| 480 |
type: Classification
|
| 481 |
dataset:
|
|
|
|
| 486 |
revision: None
|
| 487 |
metrics:
|
| 488 |
- type: accuracy
|
| 489 |
+
value: 87.01688555347093
|
| 490 |
- type: ap
|
| 491 |
+
value: 56.39167630414159
|
| 492 |
- type: f1
|
| 493 |
+
value: 81.91756262306008
|
| 494 |
- task:
|
| 495 |
type: STS
|
| 496 |
dataset:
|
|
|
|
| 501 |
revision: None
|
| 502 |
metrics:
|
| 503 |
- type: cos_sim_pearson
|
| 504 |
+
value: 71.17867432738112
|
| 505 |
- type: cos_sim_spearman
|
| 506 |
+
value: 77.47954247528372
|
| 507 |
- type: euclidean_pearson
|
| 508 |
+
value: 76.32408876437825
|
| 509 |
- type: euclidean_spearman
|
| 510 |
+
value: 77.47954025694959
|
| 511 |
- type: manhattan_pearson
|
| 512 |
+
value: 76.33345801575938
|
| 513 |
- type: manhattan_spearman
|
| 514 |
+
value: 77.48901582125997
|
| 515 |
- task:
|
| 516 |
type: Reranking
|
| 517 |
dataset:
|
|
|
|
| 522 |
revision: None
|
| 523 |
metrics:
|
| 524 |
- type: map
|
| 525 |
+
value: 27.96333052746654
|
| 526 |
- type: mrr
|
| 527 |
+
value: 26.92023809523809
|
| 528 |
- task:
|
| 529 |
type: Retrieval
|
| 530 |
dataset:
|
|
|
|
| 535 |
revision: None
|
| 536 |
metrics:
|
| 537 |
- type: map_at_1
|
| 538 |
+
value: 66.144
|
| 539 |
- type: map_at_10
|
| 540 |
+
value: 75.036
|
| 541 |
- type: map_at_100
|
| 542 |
+
value: 75.36
|
| 543 |
- type: map_at_1000
|
| 544 |
+
value: 75.371
|
| 545 |
- type: map_at_3
|
| 546 |
+
value: 73.258
|
| 547 |
- type: map_at_5
|
| 548 |
+
value: 74.369
|
| 549 |
- type: mrr_at_1
|
| 550 |
+
value: 68.381
|
| 551 |
- type: mrr_at_10
|
| 552 |
+
value: 75.633
|
| 553 |
- type: mrr_at_100
|
| 554 |
+
value: 75.91799999999999
|
| 555 |
- type: mrr_at_1000
|
| 556 |
+
value: 75.928
|
| 557 |
- type: mrr_at_3
|
| 558 |
+
value: 74.093
|
| 559 |
- type: mrr_at_5
|
| 560 |
+
value: 75.036
|
| 561 |
- type: ndcg_at_1
|
| 562 |
+
value: 68.381
|
| 563 |
- type: ndcg_at_10
|
| 564 |
+
value: 78.661
|
| 565 |
- type: ndcg_at_100
|
| 566 |
+
value: 80.15
|
| 567 |
- type: ndcg_at_1000
|
| 568 |
+
value: 80.456
|
| 569 |
- type: ndcg_at_3
|
| 570 |
+
value: 75.295
|
| 571 |
- type: ndcg_at_5
|
| 572 |
+
value: 77.14999999999999
|
| 573 |
- type: precision_at_1
|
| 574 |
+
value: 68.381
|
| 575 |
- type: precision_at_10
|
| 576 |
+
value: 9.481
|
| 577 |
- type: precision_at_100
|
| 578 |
+
value: 1.023
|
| 579 |
- type: precision_at_1000
|
| 580 |
value: 0.105
|
| 581 |
- type: precision_at_3
|
| 582 |
+
value: 28.309
|
| 583 |
- type: precision_at_5
|
| 584 |
+
value: 17.974
|
| 585 |
- type: recall_at_1
|
| 586 |
+
value: 66.144
|
| 587 |
- type: recall_at_10
|
| 588 |
+
value: 89.24499999999999
|
| 589 |
- type: recall_at_100
|
| 590 |
+
value: 96.032
|
| 591 |
- type: recall_at_1000
|
| 592 |
+
value: 98.437
|
| 593 |
- type: recall_at_3
|
| 594 |
+
value: 80.327
|
| 595 |
- type: recall_at_5
|
| 596 |
+
value: 84.733
|
| 597 |
- task:
|
| 598 |
type: Classification
|
| 599 |
dataset:
|
|
|
|
| 604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
metrics:
|
| 606 |
- type: accuracy
|
| 607 |
+
value: 68.26832548755884
|
| 608 |
- type: f1
|
| 609 |
+
value: 65.97422207086723
|
| 610 |
- task:
|
| 611 |
type: Classification
|
| 612 |
dataset:
|
|
|
|
| 617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
metrics:
|
| 619 |
- type: accuracy
|
| 620 |
+
value: 73.13046402151984
|
| 621 |
- type: f1
|
| 622 |
+
value: 72.69199129694121
|
| 623 |
- task:
|
| 624 |
type: Retrieval
|
| 625 |
dataset:
|
|
|
|
| 630 |
revision: None
|
| 631 |
metrics:
|
| 632 |
- type: map_at_1
|
| 633 |
+
value: 50.4
|
| 634 |
- type: map_at_10
|
| 635 |
+
value: 56.645
|
| 636 |
- type: map_at_100
|
| 637 |
+
value: 57.160999999999994
|
| 638 |
- type: map_at_1000
|
| 639 |
+
value: 57.218
|
| 640 |
- type: map_at_3
|
| 641 |
+
value: 55.383
|
| 642 |
- type: map_at_5
|
| 643 |
+
value: 56.08800000000001
|
| 644 |
- type: mrr_at_1
|
| 645 |
+
value: 50.6
|
| 646 |
- type: mrr_at_10
|
| 647 |
+
value: 56.745999999999995
|
| 648 |
- type: mrr_at_100
|
| 649 |
+
value: 57.262
|
| 650 |
- type: mrr_at_1000
|
| 651 |
+
value: 57.318999999999996
|
| 652 |
- type: mrr_at_3
|
| 653 |
+
value: 55.483000000000004
|
| 654 |
- type: mrr_at_5
|
| 655 |
+
value: 56.188
|
| 656 |
- type: ndcg_at_1
|
| 657 |
+
value: 50.4
|
| 658 |
- type: ndcg_at_10
|
| 659 |
+
value: 59.534
|
| 660 |
- type: ndcg_at_100
|
| 661 |
+
value: 62.400999999999996
|
| 662 |
- type: ndcg_at_1000
|
| 663 |
+
value: 64.01299999999999
|
| 664 |
- type: ndcg_at_3
|
| 665 |
+
value: 56.887
|
| 666 |
- type: ndcg_at_5
|
| 667 |
+
value: 58.160000000000004
|
| 668 |
- type: precision_at_1
|
| 669 |
+
value: 50.4
|
| 670 |
- type: precision_at_10
|
| 671 |
+
value: 6.859999999999999
|
| 672 |
- type: precision_at_100
|
| 673 |
+
value: 0.828
|
| 674 |
- type: precision_at_1000
|
| 675 |
+
value: 0.096
|
| 676 |
- type: precision_at_3
|
| 677 |
+
value: 20.4
|
| 678 |
- type: precision_at_5
|
| 679 |
+
value: 12.86
|
| 680 |
- type: recall_at_1
|
| 681 |
+
value: 50.4
|
| 682 |
- type: recall_at_10
|
| 683 |
+
value: 68.60000000000001
|
| 684 |
- type: recall_at_100
|
| 685 |
+
value: 82.8
|
| 686 |
- type: recall_at_1000
|
| 687 |
+
value: 95.7
|
| 688 |
- type: recall_at_3
|
| 689 |
+
value: 61.199999999999996
|
| 690 |
- type: recall_at_5
|
| 691 |
+
value: 64.3
|
| 692 |
- task:
|
| 693 |
type: Classification
|
| 694 |
dataset:
|
|
|
|
| 699 |
revision: None
|
| 700 |
metrics:
|
| 701 |
- type: accuracy
|
| 702 |
+
value: 73.39666666666666
|
| 703 |
- type: f1
|
| 704 |
+
value: 72.86349039489504
|
| 705 |
- task:
|
| 706 |
type: PairClassification
|
| 707 |
dataset:
|
|
|
|
| 712 |
revision: None
|
| 713 |
metrics:
|
| 714 |
- type: cos_sim_accuracy
|
| 715 |
+
value: 73.36220898754738
|
| 716 |
- type: cos_sim_ap
|
| 717 |
+
value: 78.50300066088354
|
| 718 |
- type: cos_sim_f1
|
| 719 |
+
value: 75.39370078740157
|
| 720 |
- type: cos_sim_precision
|
| 721 |
+
value: 70.59907834101382
|
| 722 |
- type: cos_sim_recall
|
| 723 |
+
value: 80.8870116156283
|
| 724 |
- type: dot_accuracy
|
| 725 |
+
value: 73.36220898754738
|
| 726 |
- type: dot_ap
|
| 727 |
+
value: 78.50300066088354
|
| 728 |
- type: dot_f1
|
| 729 |
+
value: 75.39370078740157
|
| 730 |
- type: dot_precision
|
| 731 |
+
value: 70.59907834101382
|
| 732 |
- type: dot_recall
|
| 733 |
+
value: 80.8870116156283
|
| 734 |
- type: euclidean_accuracy
|
| 735 |
+
value: 73.36220898754738
|
| 736 |
- type: euclidean_ap
|
| 737 |
+
value: 78.50300066088354
|
| 738 |
- type: euclidean_f1
|
| 739 |
+
value: 75.39370078740157
|
| 740 |
- type: euclidean_precision
|
| 741 |
+
value: 70.59907834101382
|
| 742 |
- type: euclidean_recall
|
| 743 |
+
value: 80.8870116156283
|
| 744 |
- type: manhattan_accuracy
|
| 745 |
+
value: 73.09149972929075
|
| 746 |
- type: manhattan_ap
|
| 747 |
+
value: 78.41160715817406
|
| 748 |
- type: manhattan_f1
|
| 749 |
+
value: 75.3623188405797
|
| 750 |
- type: manhattan_precision
|
| 751 |
+
value: 69.45681211041853
|
| 752 |
- type: manhattan_recall
|
| 753 |
+
value: 82.36536430834214
|
| 754 |
- type: max_accuracy
|
| 755 |
+
value: 73.36220898754738
|
| 756 |
- type: max_ap
|
| 757 |
+
value: 78.50300066088354
|
| 758 |
- type: max_f1
|
| 759 |
+
value: 75.39370078740157
|
| 760 |
- task:
|
| 761 |
type: Classification
|
| 762 |
dataset:
|
|
|
|
| 767 |
revision: None
|
| 768 |
metrics:
|
| 769 |
- type: accuracy
|
| 770 |
+
value: 91.82000000000001
|
| 771 |
- type: ap
|
| 772 |
+
value: 89.3671278896903
|
| 773 |
- type: f1
|
| 774 |
+
value: 91.8021970144045
|
| 775 |
- task:
|
| 776 |
type: STS
|
| 777 |
dataset:
|
|
|
|
| 782 |
revision: None
|
| 783 |
metrics:
|
| 784 |
- type: cos_sim_pearson
|
| 785 |
+
value: 30.07022294131062
|
| 786 |
- type: cos_sim_spearman
|
| 787 |
+
value: 36.21542804954441
|
| 788 |
- type: euclidean_pearson
|
| 789 |
+
value: 36.37841945307606
|
| 790 |
- type: euclidean_spearman
|
| 791 |
+
value: 36.215513214835546
|
| 792 |
- type: manhattan_pearson
|
| 793 |
+
value: 36.31755715017088
|
| 794 |
- type: manhattan_spearman
|
| 795 |
+
value: 36.16848256918425
|
| 796 |
- task:
|
| 797 |
type: STS
|
| 798 |
dataset:
|
|
|
|
| 803 |
revision: None
|
| 804 |
metrics:
|
| 805 |
- type: cos_sim_pearson
|
| 806 |
+
value: 36.779755871073505
|
| 807 |
- type: cos_sim_spearman
|
| 808 |
+
value: 38.736220679196606
|
| 809 |
- type: euclidean_pearson
|
| 810 |
+
value: 37.13356686891227
|
| 811 |
- type: euclidean_spearman
|
| 812 |
+
value: 38.73619198602118
|
| 813 |
- type: manhattan_pearson
|
| 814 |
+
value: 37.175466658530816
|
| 815 |
- type: manhattan_spearman
|
| 816 |
+
value: 38.74523158724344
|
| 817 |
- task:
|
| 818 |
type: STS
|
| 819 |
dataset:
|
|
|
|
| 824 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 825 |
metrics:
|
| 826 |
- type: cos_sim_pearson
|
| 827 |
+
value: 65.9737863254904
|
| 828 |
- type: cos_sim_spearman
|
| 829 |
+
value: 68.88293545840186
|
| 830 |
- type: euclidean_pearson
|
| 831 |
+
value: 67.23730973929247
|
| 832 |
- type: euclidean_spearman
|
| 833 |
+
value: 68.88293545840186
|
| 834 |
- type: manhattan_pearson
|
| 835 |
+
value: 67.30647960940956
|
| 836 |
- type: manhattan_spearman
|
| 837 |
+
value: 68.90553460682702
|
| 838 |
- task:
|
| 839 |
type: STS
|
| 840 |
dataset:
|
|
|
|
| 845 |
revision: None
|
| 846 |
metrics:
|
| 847 |
- type: cos_sim_pearson
|
| 848 |
+
value: 78.99371432933002
|
| 849 |
- type: cos_sim_spearman
|
| 850 |
+
value: 79.36496709214312
|
| 851 |
- type: euclidean_pearson
|
| 852 |
+
value: 78.77721120706431
|
| 853 |
- type: euclidean_spearman
|
| 854 |
+
value: 79.36500761622595
|
| 855 |
- type: manhattan_pearson
|
| 856 |
+
value: 78.82503201285202
|
| 857 |
- type: manhattan_spearman
|
| 858 |
+
value: 79.43915548337401
|
| 859 |
- task:
|
| 860 |
type: Reranking
|
| 861 |
dataset:
|
|
|
|
| 866 |
revision: None
|
| 867 |
metrics:
|
| 868 |
- type: map
|
| 869 |
+
value: 66.38418982516941
|
| 870 |
- type: mrr
|
| 871 |
+
value: 76.09996131153883
|
| 872 |
- task:
|
| 873 |
type: Retrieval
|
| 874 |
dataset:
|
|
|
|
| 879 |
revision: None
|
| 880 |
metrics:
|
| 881 |
- type: map_at_1
|
| 882 |
+
value: 27.426000000000002
|
| 883 |
- type: map_at_10
|
| 884 |
+
value: 77.209
|
| 885 |
- type: map_at_100
|
| 886 |
+
value: 80.838
|
| 887 |
- type: map_at_1000
|
| 888 |
+
value: 80.903
|
| 889 |
- type: map_at_3
|
| 890 |
+
value: 54.196
|
| 891 |
- type: map_at_5
|
| 892 |
+
value: 66.664
|
| 893 |
- type: mrr_at_1
|
| 894 |
+
value: 90.049
|
| 895 |
- type: mrr_at_10
|
| 896 |
+
value: 92.482
|
| 897 |
- type: mrr_at_100
|
| 898 |
+
value: 92.568
|
| 899 |
- type: mrr_at_1000
|
| 900 |
+
value: 92.572
|
| 901 |
- type: mrr_at_3
|
| 902 |
+
value: 92.072
|
| 903 |
- type: mrr_at_5
|
| 904 |
+
value: 92.33
|
| 905 |
- type: ndcg_at_1
|
| 906 |
+
value: 90.049
|
| 907 |
- type: ndcg_at_10
|
| 908 |
+
value: 84.69200000000001
|
| 909 |
- type: ndcg_at_100
|
| 910 |
+
value: 88.25699999999999
|
| 911 |
- type: ndcg_at_1000
|
| 912 |
+
value: 88.896
|
| 913 |
- type: ndcg_at_3
|
| 914 |
+
value: 86.09700000000001
|
| 915 |
- type: ndcg_at_5
|
| 916 |
+
value: 84.68599999999999
|
| 917 |
- type: precision_at_1
|
| 918 |
+
value: 90.049
|
| 919 |
- type: precision_at_10
|
| 920 |
+
value: 42.142
|
| 921 |
- type: precision_at_100
|
| 922 |
+
value: 5.017
|
| 923 |
- type: precision_at_1000
|
| 924 |
value: 0.516
|
| 925 |
- type: precision_at_3
|
| 926 |
+
value: 75.358
|
| 927 |
- type: precision_at_5
|
| 928 |
+
value: 63.173
|
| 929 |
- type: recall_at_1
|
| 930 |
+
value: 27.426000000000002
|
| 931 |
- type: recall_at_10
|
| 932 |
+
value: 83.59400000000001
|
| 933 |
- type: recall_at_100
|
| 934 |
+
value: 95.21
|
| 935 |
- type: recall_at_1000
|
| 936 |
+
value: 98.503
|
| 937 |
- type: recall_at_3
|
| 938 |
+
value: 55.849000000000004
|
| 939 |
- type: recall_at_5
|
| 940 |
+
value: 69.986
|
| 941 |
- task:
|
| 942 |
type: Classification
|
| 943 |
dataset:
|
|
|
|
| 948 |
revision: None
|
| 949 |
metrics:
|
| 950 |
- type: accuracy
|
| 951 |
+
value: 51.925999999999995
|
| 952 |
- type: f1
|
| 953 |
+
value: 50.16867723626971
|
| 954 |
- task:
|
| 955 |
type: Clustering
|
| 956 |
dataset:
|
|
|
|
| 961 |
revision: None
|
| 962 |
metrics:
|
| 963 |
- type: v_measure
|
| 964 |
+
value: 60.738901671970005
|
| 965 |
- task:
|
| 966 |
type: Clustering
|
| 967 |
dataset:
|
|
|
|
| 972 |
revision: None
|
| 973 |
metrics:
|
| 974 |
- type: v_measure
|
| 975 |
+
value: 57.08563183138733
|
| 976 |
- task:
|
| 977 |
type: Retrieval
|
| 978 |
dataset:
|
|
|
|
| 983 |
revision: None
|
| 984 |
metrics:
|
| 985 |
- type: map_at_1
|
| 986 |
+
value: 52.0
|
| 987 |
- type: map_at_10
|
| 988 |
+
value: 62.956
|
| 989 |
- type: map_at_100
|
| 990 |
+
value: 63.491
|
| 991 |
- type: map_at_1000
|
| 992 |
+
value: 63.50599999999999
|
| 993 |
- type: map_at_3
|
| 994 |
+
value: 60.733000000000004
|
| 995 |
- type: map_at_5
|
| 996 |
+
value: 62.217999999999996
|
| 997 |
- type: mrr_at_1
|
| 998 |
+
value: 52.0
|
| 999 |
- type: mrr_at_10
|
| 1000 |
+
value: 62.956
|
| 1001 |
- type: mrr_at_100
|
| 1002 |
+
value: 63.491
|
| 1003 |
- type: mrr_at_1000
|
| 1004 |
+
value: 63.50599999999999
|
| 1005 |
- type: mrr_at_3
|
| 1006 |
+
value: 60.733000000000004
|
| 1007 |
- type: mrr_at_5
|
| 1008 |
+
value: 62.217999999999996
|
| 1009 |
- type: ndcg_at_1
|
| 1010 |
+
value: 52.0
|
| 1011 |
- type: ndcg_at_10
|
| 1012 |
+
value: 67.956
|
| 1013 |
- type: ndcg_at_100
|
| 1014 |
+
value: 70.536
|
| 1015 |
- type: ndcg_at_1000
|
| 1016 |
+
value: 70.908
|
| 1017 |
- type: ndcg_at_3
|
| 1018 |
+
value: 63.456999999999994
|
| 1019 |
- type: ndcg_at_5
|
| 1020 |
+
value: 66.155
|
| 1021 |
- type: precision_at_1
|
| 1022 |
+
value: 52.0
|
| 1023 |
- type: precision_at_10
|
| 1024 |
+
value: 8.35
|
| 1025 |
- type: precision_at_100
|
| 1026 |
+
value: 0.955
|
| 1027 |
- type: precision_at_1000
|
| 1028 |
+
value: 0.098
|
| 1029 |
- type: precision_at_3
|
| 1030 |
+
value: 23.767
|
| 1031 |
- type: precision_at_5
|
| 1032 |
+
value: 15.58
|
| 1033 |
- type: recall_at_1
|
| 1034 |
+
value: 52.0
|
| 1035 |
- type: recall_at_10
|
| 1036 |
+
value: 83.5
|
| 1037 |
- type: recall_at_100
|
| 1038 |
+
value: 95.5
|
| 1039 |
- type: recall_at_1000
|
| 1040 |
+
value: 98.4
|
| 1041 |
- type: recall_at_3
|
| 1042 |
+
value: 71.3
|
| 1043 |
- type: recall_at_5
|
| 1044 |
+
value: 77.9
|
| 1045 |
- task:
|
| 1046 |
type: Classification
|
| 1047 |
dataset:
|
|
|
|
| 1052 |
revision: None
|
| 1053 |
metrics:
|
| 1054 |
- type: accuracy
|
| 1055 |
+
value: 87.10000000000001
|
| 1056 |
- type: ap
|
| 1057 |
+
value: 70.81766065881429
|
| 1058 |
- type: f1
|
| 1059 |
+
value: 85.5323306120456
|
| 1060 |
---
|
| 1061 |
|
| 1062 |
a try for emebdding model
|
config.json
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"directionality": "bidi",
|
| 10 |
+
"eos_token_id": 2,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 1024,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 4096,
|
| 16 |
+
"layer_norm_eps": 1e-12,
|
| 17 |
+
"max_position_embeddings": 8192,
|
| 18 |
+
"model_type": "bert",
|
| 19 |
+
"num_attention_heads": 16,
|
| 20 |
+
"num_hidden_layers": 24,
|
| 21 |
+
"output_past": true,
|
| 22 |
+
"pad_token_id": 0,
|
| 23 |
+
"pooler_fc_size": 768,
|
| 24 |
+
"pooler_num_attention_heads": 12,
|
| 25 |
+
"pooler_num_fc_layers": 3,
|
| 26 |
+
"pooler_size_per_head": 128,
|
| 27 |
+
"pooler_type": "first_token_transform",
|
| 28 |
+
"position_embedding_type": "absolute",
|
| 29 |
+
"torch_dtype": "bfloat16",
|
| 30 |
+
"transformers_version": "4.34.0",
|
| 31 |
+
"type_vocab_size": 2,
|
| 32 |
+
"uniem_pooling_strategy": "last_mean",
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 21128
|
| 35 |
+
}
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dde0de5cbb98d2ba84092eb2f983c3badf5a21749d59c7a9eebacaa552d2b15f
|
| 3 |
+
size 666971245
|
special_tokens_map.json
CHANGED
|
@@ -1,11 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"additional_special_tokens": [
|
| 3 |
-
"[PAD]",
|
| 4 |
-
"[UNK]",
|
| 5 |
-
"[CLS]",
|
| 6 |
-
"[SEP]",
|
| 7 |
-
"[MASK]"
|
| 8 |
-
],
|
| 9 |
"cls_token": "[CLS]",
|
| 10 |
"mask_token": "[MASK]",
|
| 11 |
"pad_token": "[PAD]",
|
|
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"cls_token": "[CLS]",
|
| 3 |
"mask_token": "[MASK]",
|
| 4 |
"pad_token": "[PAD]",
|
tokenizer_config.json
CHANGED
|
@@ -1,62 +1,56 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
},
|
| 11 |
-
"100": {
|
| 12 |
-
"content": "[UNK]",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"101": {
|
| 20 |
-
"content": "[CLS]",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"102": {
|
| 28 |
-
"content": "[SEP]",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"103": {
|
| 36 |
-
"content": "[MASK]",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
}
|
| 43 |
},
|
| 44 |
-
"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
"
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
"
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"additional_special_tokens": [],
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "[CLS]",
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 8192,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|