Commit
·
e797296
1
Parent(s):
e98a48c
Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
widget:
|
5 |
+
- text: "لقد كان الاحتفال رائع"
|
6 |
+
- text: "هناك بعض القوانين التي يجب تغيرها"
|
7 |
+
- text: "الخدمة كانت سيئة"
|
8 |
+
tags:
|
9 |
+
- text classification
|
10 |
+
- Sentiment
|
11 |
+
---
|
12 |
+
## Arabic-MARBERT-Sentiment Model
|
13 |
+
#### Model description
|
14 |
+
**Arabic-MARBERT-Sentiment Model** is a Sentiment analysis model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [KAUST dataset](https://www.kaggle.com/competitions/arabic-sentiment-analysis-2021-kaust), which includes 3 labels(positive,negative,and neutral).
|
15 |
+
|
16 |
+
#### How to use
|
17 |
+
To use the model with a transformers pipeline:
|
18 |
+
```python
|
19 |
+
>>> from transformers import pipeline
|
20 |
+
>>> model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-sentiment')
|
21 |
+
>>> sentences = ['لقد استمتعت بالحفلة', 'خدمة المطعم كانت محبطة']
|
22 |
+
>>> model(sentences)
|
23 |
+
[{'label': 'positive', 'score': 0.9577557444572449},
|
24 |
+
{'label': 'negative', 'score': 0.9158180952072144}]
|