# Cybercrime LSTM + GloVe Model This model is a Long Short-Term Memory (LSTM) model trained with GloVe embeddings for classifying cybercrime categories. It has been trained on various cybercrime data and aims to provide high accuracy in detecting and categorizing different cybercrime types. ## Model Details - **Model Type**: LSTM - **Embeddings**: GloVe - **Categories**: Offensive, botnet, DDoS, ransomware, vulnerability, non-cybercrime, etc. ## Usage This model can be used for cybercrime classification tasks. Accuracy: 0.9803 Precision: 0.9804 Recall: 0.9803 F1 Score: 0.9803 See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime' :37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning. df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True)) Epoch 1/10 158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066 Epoch 2/10 158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132 Epoch 3/10 158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534 Epoch 4/10 158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664 Epoch 5/10 158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714 Epoch 6/10 158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745 Epoch 7/10 158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749 Epoch 8/10 158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794 Epoch 9/10 158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799 Epoch 10/10 158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803