Update README.md
Browse files
README.md
CHANGED
@@ -11,31 +11,46 @@ This model is a Long Short-Term Memory (LSTM) model trained with GloVe embedding
|
|
11 |
This model can be used for cybercrime classification tasks.
|
12 |
|
13 |
Accuracy: 0.9803
|
|
|
14 |
Precision: 0.9804
|
|
|
15 |
Recall: 0.9803
|
|
|
16 |
F1 Score: 0.9803
|
17 |
|
18 |
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
|
19 |
df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime'
|
20 |
<ipython-input-6-8f9ee34c78b4>:37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
|
21 |
df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True))
|
|
|
22 |
Epoch 1/10
|
|
|
23 |
158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066
|
|
|
24 |
Epoch 2/10
|
25 |
158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132
|
|
|
26 |
Epoch 3/10
|
27 |
158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534
|
|
|
28 |
Epoch 4/10
|
29 |
158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664
|
|
|
30 |
Epoch 5/10
|
31 |
158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714
|
|
|
32 |
Epoch 6/10
|
33 |
158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745
|
|
|
34 |
Epoch 7/10
|
35 |
158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749
|
|
|
36 |
Epoch 8/10
|
37 |
158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794
|
|
|
38 |
Epoch 9/10
|
39 |
158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799
|
|
|
40 |
Epoch 10/10
|
41 |
158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803
|
|
|
|
11 |
This model can be used for cybercrime classification tasks.
|
12 |
|
13 |
Accuracy: 0.9803
|
14 |
+
|
15 |
Precision: 0.9804
|
16 |
+
|
17 |
Recall: 0.9803
|
18 |
+
|
19 |
F1 Score: 0.9803
|
20 |
|
21 |
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
|
22 |
df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime'
|
23 |
<ipython-input-6-8f9ee34c78b4>:37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
|
24 |
df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True))
|
25 |
+
|
26 |
Epoch 1/10
|
27 |
+
|
28 |
158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066
|
29 |
+
|
30 |
Epoch 2/10
|
31 |
158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132
|
32 |
+
|
33 |
Epoch 3/10
|
34 |
158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534
|
35 |
+
|
36 |
Epoch 4/10
|
37 |
158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664
|
38 |
+
|
39 |
Epoch 5/10
|
40 |
158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714
|
41 |
+
|
42 |
Epoch 6/10
|
43 |
158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745
|
44 |
+
|
45 |
Epoch 7/10
|
46 |
158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749
|
47 |
+
|
48 |
Epoch 8/10
|
49 |
158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794
|
50 |
+
|
51 |
Epoch 9/10
|
52 |
158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799
|
53 |
+
|
54 |
Epoch 10/10
|
55 |
158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803
|
56 |
+
|