AmirlyPhd commited on
Commit
44bb219
·
verified ·
1 Parent(s): 561d84f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -0
README.md CHANGED
@@ -11,31 +11,46 @@ This model is a Long Short-Term Memory (LSTM) model trained with GloVe embedding
11
  This model can be used for cybercrime classification tasks.
12
 
13
  Accuracy: 0.9803
 
14
  Precision: 0.9804
 
15
  Recall: 0.9803
 
16
  F1 Score: 0.9803
17
 
18
  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
19
  df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime'
20
  <ipython-input-6-8f9ee34c78b4>:37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
21
  df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True))
 
22
  Epoch 1/10
 
23
  158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066
 
24
  Epoch 2/10
25
  158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132
 
26
  Epoch 3/10
27
  158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534
 
28
  Epoch 4/10
29
  158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664
 
30
  Epoch 5/10
31
  158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714
 
32
  Epoch 6/10
33
  158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745
 
34
  Epoch 7/10
35
  158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749
 
36
  Epoch 8/10
37
  158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794
 
38
  Epoch 9/10
39
  158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799
 
40
  Epoch 10/10
41
  158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803
 
 
11
  This model can be used for cybercrime classification tasks.
12
 
13
  Accuracy: 0.9803
14
+
15
  Precision: 0.9804
16
+
17
  Recall: 0.9803
18
+
19
  F1 Score: 0.9803
20
 
21
  See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
22
  df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime'
23
  <ipython-input-6-8f9ee34c78b4>:37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
24
  df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True))
25
+
26
  Epoch 1/10
27
+
28
  158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066
29
+
30
  Epoch 2/10
31
  158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132
32
+
33
  Epoch 3/10
34
  158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534
35
+
36
  Epoch 4/10
37
  158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664
38
+
39
  Epoch 5/10
40
  158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714
41
+
42
  Epoch 6/10
43
  158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745
44
+
45
  Epoch 7/10
46
  158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749
47
+
48
  Epoch 8/10
49
  158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794
50
+
51
  Epoch 9/10
52
  158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799
53
+
54
  Epoch 10/10
55
  158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803
56
+