Commit
·
a928b59
1
Parent(s):
d24656f
Upload qlora_train_v4.py
Browse files- qlora_train_v4.py +336 -0
qlora_train_v4.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import wandb
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from sklearn.utils.class_weight import compute_class_weight
|
| 8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, roc_auc_score, matthews_corrcoef
|
| 9 |
+
from transformers import (
|
| 10 |
+
AutoModelForTokenClassification,
|
| 11 |
+
AutoTokenizer,
|
| 12 |
+
DataCollatorForTokenClassification,
|
| 13 |
+
TrainingArguments,
|
| 14 |
+
Trainer,
|
| 15 |
+
BitsAndBytesConfig,
|
| 16 |
+
default_data_collator
|
| 17 |
+
)
|
| 18 |
+
from torch.utils.data import Dataset as TorchDataset
|
| 19 |
+
from accelerate import Accelerator
|
| 20 |
+
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training
|
| 21 |
+
import pickle
|
| 22 |
+
import gc
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
|
| 25 |
+
# Initialize accelerator and Weights & Biases
|
| 26 |
+
accelerator = Accelerator()
|
| 27 |
+
os.environ["WANDB_NOTEBOOK_NAME"] = 'qlora_train.py'
|
| 28 |
+
wandb.init(project='binding_site_prediction')
|
| 29 |
+
|
| 30 |
+
# Helper Functions and Data Preparation
|
| 31 |
+
# -----------------------------------------------------------------------------
|
| 32 |
+
|
| 33 |
+
def print_trainable_parameters(model):
|
| 34 |
+
"""
|
| 35 |
+
Prints the number of trainable parameters in the model.
|
| 36 |
+
"""
|
| 37 |
+
trainable_params = 0
|
| 38 |
+
all_param = 0
|
| 39 |
+
for _, param in model.named_parameters():
|
| 40 |
+
all_param += param.numel()
|
| 41 |
+
if param.requires_grad:
|
| 42 |
+
trainable_params += param.numel()
|
| 43 |
+
print(
|
| 44 |
+
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def save_config_to_txt(config, filename):
|
| 48 |
+
"""Save the configuration dictionary to a text file."""
|
| 49 |
+
with open(filename, 'w') as f:
|
| 50 |
+
for key, value in config.items():
|
| 51 |
+
f.write(f"{key}: {value}\n")
|
| 52 |
+
|
| 53 |
+
def truncate_labels(labels, max_length):
|
| 54 |
+
return [label[:max_length] for label in labels]
|
| 55 |
+
|
| 56 |
+
def compute_metrics(p):
|
| 57 |
+
predictions, labels = p
|
| 58 |
+
predictions = np.argmax(predictions, axis=2)
|
| 59 |
+
predictions = predictions[labels != -100].flatten()
|
| 60 |
+
labels = labels[labels != -100].flatten()
|
| 61 |
+
accuracy = accuracy_score(labels, predictions)
|
| 62 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
|
| 63 |
+
auc = roc_auc_score(labels, predictions)
|
| 64 |
+
mcc = matthews_corrcoef(labels, predictions)
|
| 65 |
+
return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc}
|
| 66 |
+
|
| 67 |
+
def compute_loss(model, logits, inputs):
|
| 68 |
+
# print("Shape of input_ids:", inputs["input_ids"].shape)
|
| 69 |
+
labels = inputs["labels"]
|
| 70 |
+
loss_fct = nn.CrossEntropyLoss(weight=class_weights)
|
| 71 |
+
active_loss = inputs["attention_mask"].view(-1) == 1
|
| 72 |
+
active_logits = logits.view(-1, model.config.num_labels)
|
| 73 |
+
active_labels = torch.where(
|
| 74 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
| 75 |
+
)
|
| 76 |
+
loss = loss_fct(active_logits, active_labels)
|
| 77 |
+
return loss
|
| 78 |
+
|
| 79 |
+
# Load data from pickle files
|
| 80 |
+
with open("data/16M_data_big/v2_train_sequences_chunked_by_family.pkl", "rb") as f:
|
| 81 |
+
train_sequences = pickle.load(f)
|
| 82 |
+
del f
|
| 83 |
+
gc.collect()
|
| 84 |
+
|
| 85 |
+
with open("data/16M_data_big/v2_test_sequences_chunked_by_family.pkl", "rb") as f:
|
| 86 |
+
test_sequences = pickle.load(f)
|
| 87 |
+
del f
|
| 88 |
+
gc.collect()
|
| 89 |
+
|
| 90 |
+
with open("data/16M_data_big/v2_train_labels_chunked_by_family.pkl", "rb") as f:
|
| 91 |
+
train_labels = pickle.load(f)
|
| 92 |
+
del f
|
| 93 |
+
gc.collect()
|
| 94 |
+
|
| 95 |
+
with open("data/16M_data_big/v2_test_labels_chunked_by_family.pkl", "rb") as f:
|
| 96 |
+
test_labels = pickle.load(f)
|
| 97 |
+
del f
|
| 98 |
+
gc.collect()
|
| 99 |
+
|
| 100 |
+
# Adjust max_sequence_length for special tokens
|
| 101 |
+
desired_length = 1022
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
| 103 |
+
sample_sequence = "A"
|
| 104 |
+
tokenized_sample = tokenizer(sample_sequence)
|
| 105 |
+
|
| 106 |
+
# Debugging print statements
|
| 107 |
+
print(f"Sample Sequence: {sample_sequence}")
|
| 108 |
+
print(f"Tokenized Sample: {tokenized_sample}")
|
| 109 |
+
print(f"Number of tokens in tokenized sample: {len(tokenized_sample['input_ids'])}")
|
| 110 |
+
|
| 111 |
+
num_special_tokens = len(tokenized_sample["input_ids"]) - 1
|
| 112 |
+
print(f"Number of special tokens: {num_special_tokens}")
|
| 113 |
+
|
| 114 |
+
effective_length = desired_length - num_special_tokens
|
| 115 |
+
print(f"Effective sequence length (accounting for special tokens): {effective_length}")
|
| 116 |
+
|
| 117 |
+
# Custom Dataset for on-the-fly tokenization
|
| 118 |
+
class CustomDataset(TorchDataset):
|
| 119 |
+
def __init__(self, sequences, labels, tokenizer, max_length):
|
| 120 |
+
self.sequences = sequences
|
| 121 |
+
self.labels = labels
|
| 122 |
+
self.tokenizer = tokenizer
|
| 123 |
+
self.max_length = max_length
|
| 124 |
+
|
| 125 |
+
def __len__(self):
|
| 126 |
+
return len(self.sequences)
|
| 127 |
+
|
| 128 |
+
def __getitem__(self, idx):
|
| 129 |
+
sequence = self.sequences[idx]
|
| 130 |
+
label = self.labels[idx][:self.max_length]
|
| 131 |
+
|
| 132 |
+
tokenized = self.tokenizer(sequence, padding='max_length', truncation=True, max_length=effective_length, return_tensors="pt", is_split_into_words=False)
|
| 133 |
+
|
| 134 |
+
# Remove batch dimension
|
| 135 |
+
for key, value in tokenized.items():
|
| 136 |
+
tokenized[key] = value[0]
|
| 137 |
+
|
| 138 |
+
tokenized['labels'] = torch.tensor(label, dtype=torch.long)
|
| 139 |
+
|
| 140 |
+
# Diagnostics: Print the shape of the input_ids (or any other key you're interested in)
|
| 141 |
+
# print("Shape of input_ids:", tokenized["input_ids"].shape)
|
| 142 |
+
|
| 143 |
+
# Delete variables that are not needed anymore and collect garbage
|
| 144 |
+
del sequence, label
|
| 145 |
+
gc.collect()
|
| 146 |
+
|
| 147 |
+
return tokenized
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
train_dataset = CustomDataset(train_sequences, train_labels, tokenizer, effective_length)
|
| 151 |
+
test_dataset = CustomDataset(test_sequences, test_labels, tokenizer, effective_length)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Compute Class Weights
|
| 155 |
+
classes = [0, 1]
|
| 156 |
+
# flat_train_labels = [label for sublist in train_labels for label in sublist]
|
| 157 |
+
flat_train_labels_gen = (label for sublist in tqdm(train_labels, desc="Flattening labels") for label in sublist)
|
| 158 |
+
flat_train_labels = np.fromiter(flat_train_labels_gen, dtype=np.int8)
|
| 159 |
+
|
| 160 |
+
del train_sequences, test_sequences, test_labels
|
| 161 |
+
gc.collect()
|
| 162 |
+
|
| 163 |
+
def compute_average_class_weight(train_labels, classes, batch_size):
|
| 164 |
+
num_batches = len(train_labels) // batch_size + (len(train_labels) % batch_size != 0)
|
| 165 |
+
total_weights = np.zeros(len(classes))
|
| 166 |
+
|
| 167 |
+
for i in tqdm(range(num_batches), desc="Computing class weights in batches"):
|
| 168 |
+
start_idx = i * batch_size
|
| 169 |
+
end_idx = start_idx + batch_size
|
| 170 |
+
|
| 171 |
+
batch_labels = train_labels[start_idx:end_idx]
|
| 172 |
+
flat_labels = np.array([label for sublist in batch_labels for label in sublist], dtype=np.int8)
|
| 173 |
+
|
| 174 |
+
weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_labels)
|
| 175 |
+
total_weights += weights
|
| 176 |
+
|
| 177 |
+
# Clear memory
|
| 178 |
+
del batch_labels, flat_labels, weights
|
| 179 |
+
gc.collect()
|
| 180 |
+
|
| 181 |
+
# Average the weights
|
| 182 |
+
average_weights = total_weights / num_batches
|
| 183 |
+
return average_weights
|
| 184 |
+
|
| 185 |
+
batch_size = 100000 # You can adjust this based on your memory capacity
|
| 186 |
+
class_weights = compute_average_class_weight(train_labels, classes, batch_size)
|
| 187 |
+
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)
|
| 188 |
+
|
| 189 |
+
del train_labels
|
| 190 |
+
gc.collect()
|
| 191 |
+
|
| 192 |
+
# class_weights = torch.tensor(class_weights, dtype=np.int8).to(accelerator.device)
|
| 193 |
+
|
| 194 |
+
# Define Custom Trainer Class
|
| 195 |
+
class WeightedTrainer(Trainer):
|
| 196 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
| 197 |
+
outputs = model(**inputs)
|
| 198 |
+
logits = outputs.logits
|
| 199 |
+
loss = compute_loss(model, logits, inputs)
|
| 200 |
+
return (loss, outputs) if return_outputs else loss
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# Configure the quantization settings
|
| 204 |
+
bnb_config = BitsAndBytesConfig(
|
| 205 |
+
load_in_4bit=True,
|
| 206 |
+
bnb_4bit_use_double_quant=True,
|
| 207 |
+
bnb_4bit_quant_type="nf4",
|
| 208 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def train_function_no_sweeps(train_dataset, test_dataset):
|
| 213 |
+
|
| 214 |
+
# Directly set the config
|
| 215 |
+
config = {
|
| 216 |
+
"lora_alpha": 1,
|
| 217 |
+
"lora_dropout": 0.5,
|
| 218 |
+
"lr": 1.701568055793089e-04,
|
| 219 |
+
"lr_scheduler_type": "cosine",
|
| 220 |
+
"max_grad_norm": 0.5,
|
| 221 |
+
"num_train_epochs": 4,
|
| 222 |
+
"per_device_train_batch_size": 60,
|
| 223 |
+
"r": 2,
|
| 224 |
+
"weight_decay": 0.3,
|
| 225 |
+
# Add other hyperparameters as needed
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
# Log the config to W&B
|
| 229 |
+
wandb.config.update(config)
|
| 230 |
+
|
| 231 |
+
# Save the config to a text file
|
| 232 |
+
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
| 233 |
+
config_filename = f"esm2_t33_650M_qlora_config_{timestamp}.txt"
|
| 234 |
+
save_config_to_txt(config, config_filename)
|
| 235 |
+
|
| 236 |
+
model_checkpoint = "facebook/esm2_t33_650M_UR50D"
|
| 237 |
+
|
| 238 |
+
# Define labels and model
|
| 239 |
+
id2label = {0: "No binding site", 1: "Binding site"}
|
| 240 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 241 |
+
|
| 242 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
| 243 |
+
model_checkpoint,
|
| 244 |
+
num_labels=len(id2label),
|
| 245 |
+
id2label=id2label,
|
| 246 |
+
label2id=label2id,
|
| 247 |
+
quantization_config=bnb_config # Apply quantization here
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Prepare the model for 4-bit quantization training
|
| 251 |
+
model.gradient_checkpointing_enable()
|
| 252 |
+
model = prepare_model_for_kbit_training(model)
|
| 253 |
+
|
| 254 |
+
# Convert the model into a PeftModel
|
| 255 |
+
peft_config = LoraConfig(
|
| 256 |
+
task_type=TaskType.TOKEN_CLS,
|
| 257 |
+
inference_mode=False,
|
| 258 |
+
r=config["r"],
|
| 259 |
+
lora_alpha=config["lora_alpha"],
|
| 260 |
+
target_modules=[
|
| 261 |
+
"query",
|
| 262 |
+
"key",
|
| 263 |
+
"value",
|
| 264 |
+
"EsmSelfOutput.dense",
|
| 265 |
+
"EsmIntermediate.dense",
|
| 266 |
+
"EsmOutput.dense",
|
| 267 |
+
"EsmContactPredictionHead.regression",
|
| 268 |
+
"classifier"
|
| 269 |
+
],
|
| 270 |
+
lora_dropout=config["lora_dropout"],
|
| 271 |
+
bias="none", # or "all" or "lora_only"
|
| 272 |
+
# modules_to_save=["classifier"]
|
| 273 |
+
)
|
| 274 |
+
model = get_peft_model(model, peft_config)
|
| 275 |
+
print_trainable_parameters(model) # added this in
|
| 276 |
+
|
| 277 |
+
# Use the accelerator
|
| 278 |
+
model = accelerator.prepare(model)
|
| 279 |
+
train_dataset = accelerator.prepare(train_dataset)
|
| 280 |
+
test_dataset = accelerator.prepare(test_dataset)
|
| 281 |
+
|
| 282 |
+
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
| 283 |
+
|
| 284 |
+
# Training setup
|
| 285 |
+
training_args = TrainingArguments(
|
| 286 |
+
output_dir=f"esm2_t33_650M_qlora_binding_sites_{timestamp}",
|
| 287 |
+
learning_rate=config["lr"],
|
| 288 |
+
lr_scheduler_type=config["lr_scheduler_type"],
|
| 289 |
+
gradient_accumulation_steps=4, # changed from 1 to 4
|
| 290 |
+
# warmup_steps=2, # added this in
|
| 291 |
+
max_grad_norm=config["max_grad_norm"],
|
| 292 |
+
per_device_train_batch_size=config["per_device_train_batch_size"],
|
| 293 |
+
per_device_eval_batch_size=config["per_device_train_batch_size"],
|
| 294 |
+
num_train_epochs=config["num_train_epochs"],
|
| 295 |
+
weight_decay=config["weight_decay"],
|
| 296 |
+
evaluation_strategy="epoch",
|
| 297 |
+
save_strategy="epoch",
|
| 298 |
+
load_best_model_at_end=True,
|
| 299 |
+
metric_for_best_model="f1",
|
| 300 |
+
greater_is_better=True,
|
| 301 |
+
push_to_hub=False,
|
| 302 |
+
logging_dir=None,
|
| 303 |
+
logging_first_step=False,
|
| 304 |
+
logging_steps=200,
|
| 305 |
+
save_total_limit=7,
|
| 306 |
+
no_cuda=False,
|
| 307 |
+
seed=8893,
|
| 308 |
+
fp16=True,
|
| 309 |
+
report_to='wandb',
|
| 310 |
+
optim="paged_adamw_8bit" # added this in
|
| 311 |
+
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# Initialize Trainer
|
| 315 |
+
trainer = WeightedTrainer(
|
| 316 |
+
model=model,
|
| 317 |
+
args=training_args,
|
| 318 |
+
train_dataset=train_dataset,
|
| 319 |
+
eval_dataset=test_dataset,
|
| 320 |
+
tokenizer=tokenizer,
|
| 321 |
+
data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer),
|
| 322 |
+
compute_metrics=compute_metrics
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Train and Save Model
|
| 326 |
+
trainer.train()
|
| 327 |
+
save_path = os.path.join("qlora_binding_sites", f"best_model_esm2_t33_650M_qlora_{timestamp}")
|
| 328 |
+
trainer.save_model(save_path)
|
| 329 |
+
tokenizer.save_pretrained(save_path)
|
| 330 |
+
|
| 331 |
+
# Call the training function
|
| 332 |
+
if __name__ == "__main__":
|
| 333 |
+
train_function_no_sweeps(train_dataset, test_dataset)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|