--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - Nooon/Donate_a_cry metrics: - accuracy model-index: - name: distilhubert-finetuned-Donate_a_cry results: - task: name: Audio Classification type: audio-classification dataset: name: Donate_a_cry type: Nooon/Donate_a_cry config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9347826086956522 --- # distilhubert-finetuned-Donate_a_cry This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the Donate_a_cry dataset. It achieves the following results on the evaluation set: - Loss: 0.3214 - Accuracy: 0.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7814 | 1.0 | 52 | 0.3964 | 0.9348 | | 0.7018 | 2.0 | 104 | 0.3576 | 0.9348 | | 0.6262 | 3.0 | 156 | 0.3551 | 0.9348 | | 0.4743 | 4.0 | 208 | 0.3489 | 0.9348 | | 0.6709 | 5.0 | 260 | 0.3983 | 0.9348 | | 0.5627 | 6.0 | 312 | 0.3430 | 0.9348 | | 0.6891 | 7.0 | 364 | 0.3549 | 0.9348 | | 0.7408 | 8.0 | 416 | 0.3505 | 0.9348 | | 0.4493 | 9.0 | 468 | 0.3161 | 0.9348 | | 0.2918 | 10.0 | 520 | 0.3214 | 0.9348 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2