--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer model-index: - name: nlp_te_mlm_scibert results: [] --- # nlp_te_mlm_scibert This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 5678 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 1.3828 | 0.9963 | 152 | 1.2566 | | 1.3087 | 1.9992 | 305 | 1.2295 | | 1.289 | 2.9955 | 457 | 1.2237 | | 1.262 | 3.9984 | 610 | 1.2054 | | 1.2516 | 4.9947 | 762 | 1.1999 | | 1.229 | 5.9975 | 915 | 1.1944 | | 1.2272 | 6.9939 | 1067 | 1.1880 | | 1.2066 | 7.9967 | 1220 | 1.1879 | | 1.1991 | 8.9996 | 1373 | 1.1807 | | 1.1978 | 9.9959 | 1525 | 1.1760 | | 1.1803 | 10.9988 | 1678 | 1.1724 | | 1.1819 | 11.9951 | 1830 | 1.1716 | | 1.1659 | 12.9980 | 1983 | 1.1731 | | 1.1658 | 13.9943 | 2135 | 1.1673 | | 1.1524 | 14.9971 | 2288 | 1.1669 | | 1.1481 | 16.0 | 2441 | 1.1590 | | 1.1468 | 16.9963 | 2593 | 1.1626 | | 1.1361 | 17.9992 | 2746 | 1.1623 | | 1.1371 | 18.9955 | 2898 | 1.1582 | | 1.125 | 19.9984 | 3051 | 1.1540 | | 1.1276 | 20.9947 | 3203 | 1.1551 | | 1.1143 | 21.9975 | 3356 | 1.1518 | | 1.118 | 22.9939 | 3508 | 1.1550 | | 1.104 | 23.9967 | 3661 | 1.1525 | | 1.1011 | 24.9996 | 3814 | 1.1483 | | 1.1061 | 25.9959 | 3966 | 1.1533 | | 1.0941 | 26.9988 | 4119 | 1.1473 | | 1.0951 | 27.9951 | 4271 | 1.1444 | | 1.0866 | 28.9980 | 4424 | 1.1462 | | 1.089 | 29.9943 | 4576 | 1.1453 | | 1.0768 | 30.9971 | 4729 | 1.1496 | | 1.0744 | 32.0 | 4882 | 1.1493 | | 1.0773 | 32.9963 | 5034 | 1.1478 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1 - Datasets 2.19.2 - Tokenizers 0.19.1