Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 255.78 +/- 21.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ed249b1120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ed249b11c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ed249b1260>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ed249b1300>", "_build": "<function ActorCriticPolicy._build at 0x79ed249b13a0>", "forward": "<function ActorCriticPolicy.forward at 0x79ed249b1440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ed249b14e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ed249b1580>", "_predict": "<function ActorCriticPolicy._predict at 0x79ed249b1620>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ed249b16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ed249b1760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ed249b1800>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ed2492a280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5000192, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739311445793384684, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADAaLuPakK6uz3MO4bBjDUFnS47D++ENAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.8399999999993994e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+43xnWatuMAWyUS8GMAXSUR0DBhPoeFL39dX2UKGgGR0Bx4aEzwc5saAdLumgIR0DBhRwPiDNAdX2UKGgGR0BwhMQlKK51aAdLzGgIR0DBhWiJXQt0dX2UKGgGR0BH+Rkd3jdYaAdLfWgIR0DBhX8x/NJOdX2UKGgGR0Bx/IKCxu89aAdNAgFoCEdAwYWt5yEL6XV9lChoBkdAchLW4EwFkmgHS6ZoCEdAwYXLbfxc3XV9lChoBkdAbgnB9kSVW2gHS8BoCEdAwYXtq59Vm3V9lChoBkdAcpZRCx/us2gHS9xoCEdAwYY/MQmNR3V9lChoBkdActcmyPdVN2gHS8VoCEdAwYZkgf2bonV9lChoBkdAbsIaQV9F4WgHS7loCEdAwYaG1uzhP3V9lChoBkdAckoCT2WY4WgHS61oCEdAwYa0J4SpSHV9lChoBkdAcFAAyVObiWgHS7toCEdAwYbfA0Kqn3V9lChoBkdAb4m5LAYYSGgHS9poCEdAwYdI32mHg3V9lChoBkdASmbRrrPdEmgHS5VoCEdAwYdwwFC9iHV9lChoBkdAcsmRCQcPv2gHS8loCEdAwYeUyY5T63V9lChoBkdAZCEl/H5rQGgHTegDaAhHQMGIeddeIEd1fZQoaAZHQHMFf2K2rn1oB0u5aAhHQMGImj3dsSF1fZQoaAZHQGgqW+49X91oB03oA2gIR0DBiXxxaPjodX2UKGgGR0BzGLRoh6jWaAdL9GgIR0DBiabq+rU9dX2UKGgGR0Bw6d2KVII4aAdL4WgIR0DBidAf2bobdX2UKGgGR0Bx+GkXUH6eaAdLzmgIR0DBih1SydFwdX2UKGgGR0BwF8oiLVFyaAdNJQFoCEdAwYpTgJkXlHV9lChoBkdAZPXT/hl182gHTegDaAhHQMGLLsMI/qx1fZQoaAZHQHIjqbSZ0CBoB0u1aAhHQMGLUI2wV0t1fZQoaAZHQGfxl+/gzgxoB03oA2gIR0DBjCpydWhidX2UKGgGR8BAaSVObiIdaAdLjGgIR0DBjEPJ/5LzdX2UKGgGR0ByjVvES/TLaAdL82gIR0DBjG8K/mDEdX2UKGgGR0BwBZ8x9G7SaAdNLwFoCEdAwYzrVlwtKHV9lChoBkfAY4B8Jlar3mgHS3doCEdAwY0FO0svqXV9lChoBkdAZEiunuRcNmgHTegDaAhHQMGN++EAYHh1fZQoaAZHQHKg/PTodMloB0vkaAhHQMGOJPLX+VF1fZQoaAZHQHD9QBtDUmVoB0u2aAhHQMGORQiJO351fZQoaAZHQHHut8E3bVVoB0vBaAhHQMGOaS+HrQh1fZQoaAZHQEOYf/WDpTxoB0uQaAhHQMGOq5BC2MN1fZQoaAZHQHGmTTfBN21oB0vQaAhHQMGO1H6l+E11fZQoaAZHQHCLwYtQKrtoB0uvaAhHQMGO9Lvb48F1fZQoaAZHQHIB4p+c6NloB0vgaAhHQMGPHKPwNLF1fZQoaAZHQHIP8yBTXJ5oB00dAWgIR0DBj0+l9BrvdX2UKGgGR0BwJSgHu7YkaAdL2WgIR0DBj6EYuTRqdX2UKGgGR0AC4Bo24uscaAdLeWgIR0DBj7dVDKHPdX2UKGgGR0By13aews5GaAdL0WgIR0DBj9+IXTEzdX2UKGgGR0Bw5O01IiC8aAdNRwFoCEdAwZAYmjTKDHV9lChoBkdAb6HKDCgsb2gHTdcDaAhHQMGQ9vUSZjR1fZQoaAZHQHH6R3u/k/9oB0vCaAhHQMGRGbf51vF1fZQoaAZHQHA3NZid8RdoB00oAWgIR0DBkXeL74zrdX2UKGgGR0ByhCHZbpu/aAdL9GgIR0DBkaNpZfUndX2UKGgGR0BolMidJ8OTaAdN6ANoCEdAwZKTMrVe8nV9lChoBkdAcMN2CuloDmgHS9VoCEdAwZLCXFcY7HV9lChoBkdAcOqrKvFFUmgHS6hoCEdAwZLnOD8Lr3V9lChoBkdAcVpMTviLl2gHTU4CaAhHQMGTloYvWYp1fZQoaAZHQFIHC2c8TzxoB0uJaAhHQMGTr1hsqKB1fZQoaAZHQGWh9G7SRbNoB03oA2gIR0DBlJAYrJ8wdX2UKGgGR0BjdNLUTcqOaAdN6ANoCEdAwZV0IrOJL3V9lChoBkdAc3VBo24usmgHS8poCEdAwZWZkOqeb3V9lChoBkdAcx4Dcdo372gHS8doCEdAwZW9nRsuWnV9lChoBkdAcILnCO3lS2gHS9FoCEdAwZYMebutwXV9lChoBkfAXGNlUZNwi2gHS49oCEdAwZYlnvlU63V9lChoBkdAcXH4+8oQWmgHS+xoCEdAwZZPy6tknXV9lChoBkdAYv3tO2y9mGgHTegDaAhHQMGXNAUcn3N1fZQoaAZHQHINwsCkoF5oB0ukaAhHQMGXUOtGNJh1fZQoaAZHQHJmUCvHLidoB0uoaAhHQMGXbyYPXkJ1fZQoaAZHQHFqwPI4lyBoB0u/aAhHQMGXkiT+vQp1fZQoaAZHQHG9Dwpe/pNoB0upaAhHQMGX22sJY1Z1fZQoaAZHQGdMX8fms/9oB03oA2gIR0DBmN3BvaUSdX2UKGgGR0BwpNoN/e+FaAdLz2gIR0DBmRMOAiFCdX2UKGgGR0Bl1Zew9q1xaAdN6ANoCEdAwZn3NFBppXV9lChoBkdAcvjbrkbPyGgHTZYBaAhHQMGaQEsjFAF1fZQoaAZHQHNa2HLzPKNoB0voaAhHQMGaadVFQVN1fZQoaAZHQGHfHrY5DJFoB03oA2gIR0DBm0WKKpDNdX2UKGgGR8BE1JDmbLEDaAdLeWgIR0DBm1szwc5sdX2UKGgGR0Bn3X8TBZZCaAdN6ANoCEdAwZw6yOaOP3V9lChoBkdActI6uW8h92gHS7ZoCEdAwZyHid8Rc3V9lChoBkdARXh9Aood/GgHS4BoCEdAwZyf+kP+XXV9lChoBkdActE7BwdbPmgHS81oCEdAwZzGM1CPZXV9lChoBkdAcPweFL39JmgHS65oCEdAwZzlbcGke3V9lChoBkdAPrd8/lhgE2gHS4doCEdAwZz9iqhlDnV9lChoBkfAKRkDZDiOvWgHS1doCEdAwZ0M1LJ0XHV9lChoBkdAckLHZK3/gmgHTREBaAhHQMGdaj8+A3F1fZQoaAZHwGCmCKaXrt5oB0tuaAhHQMGdfTw+dLB1fZQoaAZHwBqzZcs189hoB0tZaAhHQMGdjTYEnst1fZQoaAZHQHFx+e8PFvRoB01iAmgIR0DBnfpoZhrndX2UKGgGR0BmGvl2eQMhaAdN6ANoCEdAwZ8Q1AJLNHV9lChoBkdAUubCO3lS0mgHS5FoCEdAwZ9UJJGvwHV9lChoBkdAZxJNZ/0/W2gHTegDaAhHQMGgMdLg4wR1fZQoaAZHQGZrT2vjfeloB03oA2gIR0DBoOm2kSEldX2UKGgGR0ByJTkXDWK/aAdLnGgIR0DBoS3N1QqJdX2UKGgGR0Bx+dF8XvYwaAdN0AFoCEdAwaGDTXJ5mnV9lChoBkdAYxwtthuwYGgHTegDaAhHQMGiaGGEf1Z1fZQoaAZHQGHxCfHxSYRoB03oA2gIR0DBo0V6C17ZdX2UKGgGR8Bhe1ZcLSeAaAdLfmgIR0DBo1xWzWwvdX2UKGgGR0BkveOyVv/BaAdN6ANoCEdAwaRSYUnG83V9lChoBkdAc08nJ1aGH2gHS8poCEdAwaSA1tO2zHV9lChoBkdASzYO+ZgG8mgHS35oCEdAwaSginHeanV9lChoBkdAcAwtm+TNdWgHS+RoCEdAwaUHvo/zKHV9lChoBkdAZQOEug6EJ2gHTegDaAhHQMGl6o7eVLV1fZQoaAZHP//YGt6ol2NoB0tjaAhHQMGl/aUqx1R1fZQoaAZHQGg9sfzSThZoB03oA2gIR0DBptut4iX6dX2UKGgGR0BjcDtVrAP/aAdN6ANoCEdAwae6sr/bTXV9lChoBkdAaBRtvXK8tmgHTegDaAhHQMGomRfF72N1fZQoaAZHwEnj9GZuyeJoB0tQaAhHQMGop1vVEux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19532, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd5d98cb240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd5d98cb2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd5d98cb380>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd5d98cb420>", "_build": "<function ActorCriticPolicy._build at 0x7dd5d98cb4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7dd5d98cb560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd5d98cb600>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd5d98cb6a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd5d98cb740>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd5d98cb7e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd5d98cb880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd5d98cb920>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd5da85ec80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739561881479177223, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKY2xr1cW026VkvaNrv2aTKlEDo7Isv9tQAAgD8AAIA/YIQLvh+lo7vMbiS8Qh1Kul2c5TzkRCw7AACAPwAAgD9Acoi99vgNuhVlaTpAi7c094YmOwTqiLkAAIA/AACAP0AVmr0paCG62g/PtlxsabJa6Ek6uhDxNQAAgD8AAIA/gNxJvVy7Kbq6lzQ5zYNeNNpKXrm2p024AACAPwAAgD+acfW8SPusug6GDzi8tu0ygLxEufZeJLcAAIA/AACAP83KTr24Xue5NiyeOutIGTboWZo7l3O6uQAAgD8AAIA/5sY0vfYASLqdLlq4EZI/MnO2Jrsbl3w3AACAPwAAgD+aBf68XUEHPt3QF71Bcny+FVTUOjygPr0AAAAAAAAAAOZdT74hrvy8fs6mOYoAUDgagWQ+u73tuAAAgD8AAIA/Rr0xvva8HLw+aGy6UCI5uIlRiT168485AACAPwAAgD8tFgS+e8izuhJpQLrtjIe2ea2FO0sCYzkAAIA/AACAP2C6Mb6IMoq8NAOgubZGObj8CvE91f3/OAAAgD8AAIA/M94JPh/Jmru+O746pZsBuSNI57wjI925AACAPwAAgD8zlJS9jx52unqOjDr8wbg1ZSzGOmkpo7kAAIA/AACAP82CA70fpdC5JA0At03cQ7FECHq7P7QaNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJk9ld1MduMAWyUTegDjAF0lEdAiyjU163RX3V9lChoBkdAYaJLVWjoIWgHTegDaAhHQIssXpUxVQ11fZQoaAZHQGIK3AuZkTZoB03oA2gIR0CLYREjPfKqdX2UKGgGR0BiZ9LpRoAXaAdN6ANoCEdAi2IX1BdD6XV9lChoBkdAYmU3Lmp2lmgHTegDaAhHQItlTDO1OTJ1fZQoaAZHQG0XYrz5GjNoB00OAmgIR0CLcHQiRnvldX2UKGgGR0BaIiBK+SKWaAdN6ANoCEdAi3CTspoboHV9lChoBkdAZIuJXyRSxmgHTegDaAhHQItx4cFQl8h1fZQoaAZHQHEt23jMmnhoB00ZAWgIR0CLgw94/u9fdX2UKGgGR0Bn1xKSPluFaAdN6ANoCEdAi4q6oVEeAHV9lChoBkdAZqCcR15jY2gHTegDaAhHQIuRljNIK+l1fZQoaAZHQGG2Z7ojfN1oB03oA2gIR0CLoE4c3l0YdX2UKGgGR0BlHmb/ffoBaAdN6ANoCEdAi6CduYQarHV9lChoBkdAYA/FglWwNmgHTegDaAhHQIukbyc0+C91fZQoaAZHQGNNi3XqZ+hoB03oA2gIR0CLpWDfWMCLdX2UKGgGR0BiP42XLNfPaAdN6ANoCEdAi6V+JpFkQXV9lChoBkdAXj6LS/j81mgHTegDaAhHQIuoQJPZZjh1fZQoaAZHQGaDbE5yU9poB03oA2gIR0CLqhDZUT+OdX2UKGgGR0Bjmr1XeWOZaAdN6ANoCEdAi65CBoVVP3V9lChoBkdAcAr1zQu27WgHTW0CaAhHQIu0voq0+kh1fZQoaAZHQGqoWfTTfBNoB00VAmgIR0CLuTWcSXdCdX2UKGgGR0BkeFnZkCmuaAdN6ANoCEdAi8oRgqmTDHV9lChoBkdAZcfVU+9rXWgHTegDaAhHQIvnEySFGod1fZQoaAZHQG73SeqaPS5oB01MAmgIR0CL8aJm/WUbdX2UKGgGR0BmoYyZa3ZxaAdN6ANoCEdAi/G5wn6VMXV9lChoBkdAYKtkYoAn2WgHTegDaAhHQIvx1zU7SzB1fZQoaAZHQGLAkTHsC1ZoB03oA2gIR0CMCDHSWqtHdX2UKGgGR0BV0rJjlPrOaAdN6ANoCEdAjA6ScCo0h3V9lChoBkdAcIqfbblA/2gHTWwDaAhHQIwX7whGH591fZQoaAZHQGI2WeYlY2doB03oA2gIR0CMHDMJQcghdX2UKGgGR0BpKf6TGHYZaAdN6ANoCEdAjB/WP91loXV9lChoBkdAYrTIsiB5HGgHTegDaAhHQIwgwqI7/4t1fZQoaAZHQGKGNFrl/6RoB03oA2gIR0CMINvZyuIRdX2UKGgGR0Bu9ARGtp22aAdN4QFoCEdAjCLAA6uGK3V9lChoBkdAb0ThWHUMHGgHTeoBaAhHQIwjefh/Aj91fZQoaAZHQGM+TzundftoB03oA2gIR0CMJQRf4REndX2UKGgGR0Aw8n8baRISaAdL/mgIR0CMJq3AmAskdX2UKGgGR0BlJKnFYMfBaAdN6ANoCEdAjCimWt2cKHV9lChoBkdAYTtBInSfDmgHTegDaAhHQIwvXaakRBh1fZQoaAZHQGEo0zCUHIJoB03oA2gIR0CMNPSYPXkHdX2UKGgGR0A2+hRZU1htaAdL6mgIR0CMNY9M9KVZdX2UKGgGR0BuOVfE4vOAaAdN4QJoCEdAjDo5Bsyi23V9lChoBkdAYeBTkQwsXmgHTegDaAhHQIxGPCXQdCF1fZQoaAZHQGLyrWqcVgxoB03oA2gIR0CMX0pfhMrVdX2UKGgGR0BwuFrIo3JgaAdNegJoCEdAjHJQtSQ5m3V9lChoBkdAZOFpnpSrHWgHTegDaAhHQIx+27lJYkp1fZQoaAZHQHDNniiqQzVoB02jAWgIR0CMh6BIWgvldX2UKGgGR0Bw5ub3Gn4xaAdNgwJoCEdAjIjUoBq9G3V9lChoBkdAb0j9deIEbGgHTWMDaAhHQIyLCi/O+qR1fZQoaAZHQGV5pyIYWLxoB03oA2gIR0CMjTuqFRHgdX2UKGgGR0BvO0C1Z1V6aAdNSANoCEdAjJF9YfW+XnV9lChoBkdAXwU78vVVgmgHTegDaAhHQIySBL26ClJ1fZQoaAZHQGhwYRNATqVoB03oA2gIR0CMlRRCx/utdX2UKGgGR0Bkbo2hqTKUaAdN6ANoCEdAjJe+IMz/InV9lChoBkdAZ/2J+DvmYGgHTegDaAhHQIyZQOz6ab51fZQoaAZHQGaI9rGipNtoB03oA2gIR0CMmuJ3PiT/dX2UKGgGR0BliYrWiDdyaAdN6ANoCEdAjKI0dBBzFXV9lChoBkdAZhq6ZH/cWWgHTegDaAhHQIynPF1jiGZ1fZQoaAZHQGUNE4WDYiBoB03oA2gIR0CMq4ROk+HKdX2UKGgGR0BnmpMtbs4UaAdN6ANoCEdAjLjgeii7CnV9lChoBkdAcOBY/mknC2gHTYABaAhHQIy8OQyRB/t1fZQoaAZHQHA4Tqnm7rdoB025AWgIR0CM2L1HOKO1dX2UKGgGR0Bwd4YQ8OkMaAdNBAFoCEdAjNpk9dNWVHV9lChoBkdAY/URxtHhCWgHTegDaAhHQIzi5egL7XR1fZQoaAZHQG5QvH1e0HBoB00aA2gIR0CM5QGRFI/adX2UKGgGR0BlrATGo73gaAdN6ANoCEdAjPGTRplBhXV9lChoBkdAb7EveP7vX2gHTYUDaAhHQIz0IOrhisp1fZQoaAZHQG+5ZnlGPPtoB02wAWgIR0CM/A8cuJ1rdX2UKGgGR0Blv/fGdZq3aAdN6ANoCEdAjPwZv99+gHV9lChoBkdAY17S619fC2gHTegDaAhHQIz/qvovBad1fZQoaAZHQHDnTQ/oq1BoB02JA2gIR0CNAlcKPXCkdX2UKGgGR0Bl7HZAY51eaAdN6ANoCEdAjQLyQPqcE3V9lChoBkdAaXV8LKFIu2gHTegDaAhHQI0DVbiZOSJ1fZQoaAZHQG/jRY7q6e5oB008AmgIR0CNBaJP69CedX2UKGgGR0Bmx6QeV9ncaAdN6ANoCEdAjQZhcAzYVnV9lChoBkdAb2zd1uBMBmgHTWQBaAhHQI0Gd0Rvm5l1fZQoaAZHQGMRiPyTY/VoB03oA2gIR0CNFp7UG3WndX2UKGgGR0By96IznA6/aAdNrQFoCEdAjRhTshPj43V9lChoBkdAaLB3Roh6jWgHTegDaAhHQI0b2dqcmSh1fZQoaAZHQEwwd1+y7f5oB0u4aAhHQI0tKVD8cdZ1fZQoaAZHQHEgfwqiGnJoB02AAmgIR0CNLk7yQPqcdX2UKGgGR0BgQytq59VnaAdN6ANoCEdAjU9yZjQRgHV9lChoBkdAYzp0FKTSs2gHTegDaAhHQI1RLB/I8yN1fZQoaAZHQG0ucOTaCcxoB019AmgIR0CNVG6iCaqkdX2UKGgGR0Bvy+MOwxFiaAdNfQJoCEdAjVepo0ygw3V9lChoBkdAZIxiy6cy32gHTegDaAhHQI1aZx1gYxd1fZQoaAZHQEXqqtozvZ1oB0vpaAhHQI1bLAgxJul1fZQoaAZHQG7d45cTrVxoB00CA2gIR0CNXDnV5KODdX2UKGgGR0BvynLNfPX1aAdNFwNoCEdAjWB1rqMWGnV9lChoBkdAcZ47ngYP5GgHTXoDaAhHQI1n2kxh2GJ1fZQoaAZHQGIwEEC/47BoB03oA2gIR0CNasHZ9NN8dX2UKGgGR0BiSiY9gWrPaAdN6ANoCEdAjWrFGPPszHV9lChoBkdAbl3rJKaodmgHTakDaAhHQI1u845tFa11fZQoaAZHQGyQyeqaPS5oB03BA2gIR0CNcNcBU70WdX2UKGgGR0BugDpeNT99aAdNyAFoCEdAjXQu5J9RaXV9lChoBkdAcCRNHH3lCGgHTcUBaAhHQI2AY+GGmDV1fZQoaAZHQGYmHGbTc7BoB03oA2gIR0CNhNrtVrAQdX2UKGgGR0By0N5a/yoXaAdNAgNoCEdAjYXArpaA4HV9lChoBkdAZl3ZpSJj2GgHTegDaAhHQI2GSSvC/Gl1fZQoaAZHQHBmubAk9lpoB027AmgIR0CNkD74SHuadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5919c6b01d4f15072764c780c15d7ca84fff4f9fc9772ec4bb29a788fd3bd753
|
3 |
+
size 147617
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,7 +76,7 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dd5d98cb240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd5d98cb2e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd5d98cb380>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd5d98cb420>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dd5d98cb4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dd5d98cb560>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd5d98cb600>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd5d98cb6a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dd5d98cb740>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd5d98cb7e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd5d98cb880>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd5d98cb920>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dd5da85ec80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1739561881479177223,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKY2xr1cW026VkvaNrv2aTKlEDo7Isv9tQAAgD8AAIA/YIQLvh+lo7vMbiS8Qh1Kul2c5TzkRCw7AACAPwAAgD9Acoi99vgNuhVlaTpAi7c094YmOwTqiLkAAIA/AACAP0AVmr0paCG62g/PtlxsabJa6Ek6uhDxNQAAgD8AAIA/gNxJvVy7Kbq6lzQ5zYNeNNpKXrm2p024AACAPwAAgD+acfW8SPusug6GDzi8tu0ygLxEufZeJLcAAIA/AACAP83KTr24Xue5NiyeOutIGTboWZo7l3O6uQAAgD8AAIA/5sY0vfYASLqdLlq4EZI/MnO2Jrsbl3w3AACAPwAAgD+aBf68XUEHPt3QF71Bcny+FVTUOjygPr0AAAAAAAAAAOZdT74hrvy8fs6mOYoAUDgagWQ+u73tuAAAgD8AAIA/Rr0xvva8HLw+aGy6UCI5uIlRiT168485AACAPwAAgD8tFgS+e8izuhJpQLrtjIe2ea2FO0sCYzkAAIA/AACAP2C6Mb6IMoq8NAOgubZGObj8CvE91f3/OAAAgD8AAIA/M94JPh/Jmru+O746pZsBuSNI57wjI925AACAPwAAgD8zlJS9jx52unqOjDr8wbg1ZSzGOmkpo7kAAIA/AACAP82CA70fpdC5JA0At03cQ7FECHq7P7QaNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJk9ld1MduMAWyUTegDjAF0lEdAiyjU163RX3V9lChoBkdAYaJLVWjoIWgHTegDaAhHQIssXpUxVQ11fZQoaAZHQGIK3AuZkTZoB03oA2gIR0CLYREjPfKqdX2UKGgGR0BiZ9LpRoAXaAdN6ANoCEdAi2IX1BdD6XV9lChoBkdAYmU3Lmp2lmgHTegDaAhHQItlTDO1OTJ1fZQoaAZHQG0XYrz5GjNoB00OAmgIR0CLcHQiRnvldX2UKGgGR0BaIiBK+SKWaAdN6ANoCEdAi3CTspoboHV9lChoBkdAZIuJXyRSxmgHTegDaAhHQItx4cFQl8h1fZQoaAZHQHEt23jMmnhoB00ZAWgIR0CLgw94/u9fdX2UKGgGR0Bn1xKSPluFaAdN6ANoCEdAi4q6oVEeAHV9lChoBkdAZqCcR15jY2gHTegDaAhHQIuRljNIK+l1fZQoaAZHQGG2Z7ojfN1oB03oA2gIR0CLoE4c3l0YdX2UKGgGR0BlHmb/ffoBaAdN6ANoCEdAi6CduYQarHV9lChoBkdAYA/FglWwNmgHTegDaAhHQIukbyc0+C91fZQoaAZHQGNNi3XqZ+hoB03oA2gIR0CLpWDfWMCLdX2UKGgGR0BiP42XLNfPaAdN6ANoCEdAi6V+JpFkQXV9lChoBkdAXj6LS/j81mgHTegDaAhHQIuoQJPZZjh1fZQoaAZHQGaDbE5yU9poB03oA2gIR0CLqhDZUT+OdX2UKGgGR0Bjmr1XeWOZaAdN6ANoCEdAi65CBoVVP3V9lChoBkdAcAr1zQu27WgHTW0CaAhHQIu0voq0+kh1fZQoaAZHQGqoWfTTfBNoB00VAmgIR0CLuTWcSXdCdX2UKGgGR0BkeFnZkCmuaAdN6ANoCEdAi8oRgqmTDHV9lChoBkdAZcfVU+9rXWgHTegDaAhHQIvnEySFGod1fZQoaAZHQG73SeqaPS5oB01MAmgIR0CL8aJm/WUbdX2UKGgGR0BmoYyZa3ZxaAdN6ANoCEdAi/G5wn6VMXV9lChoBkdAYKtkYoAn2WgHTegDaAhHQIvx1zU7SzB1fZQoaAZHQGLAkTHsC1ZoB03oA2gIR0CMCDHSWqtHdX2UKGgGR0BV0rJjlPrOaAdN6ANoCEdAjA6ScCo0h3V9lChoBkdAcIqfbblA/2gHTWwDaAhHQIwX7whGH591fZQoaAZHQGI2WeYlY2doB03oA2gIR0CMHDMJQcghdX2UKGgGR0BpKf6TGHYZaAdN6ANoCEdAjB/WP91loXV9lChoBkdAYrTIsiB5HGgHTegDaAhHQIwgwqI7/4t1fZQoaAZHQGKGNFrl/6RoB03oA2gIR0CMINvZyuIRdX2UKGgGR0Bu9ARGtp22aAdN4QFoCEdAjCLAA6uGK3V9lChoBkdAb0ThWHUMHGgHTeoBaAhHQIwjefh/Aj91fZQoaAZHQGM+TzundftoB03oA2gIR0CMJQRf4REndX2UKGgGR0Aw8n8baRISaAdL/mgIR0CMJq3AmAskdX2UKGgGR0BlJKnFYMfBaAdN6ANoCEdAjCimWt2cKHV9lChoBkdAYTtBInSfDmgHTegDaAhHQIwvXaakRBh1fZQoaAZHQGEo0zCUHIJoB03oA2gIR0CMNPSYPXkHdX2UKGgGR0A2+hRZU1htaAdL6mgIR0CMNY9M9KVZdX2UKGgGR0BuOVfE4vOAaAdN4QJoCEdAjDo5Bsyi23V9lChoBkdAYeBTkQwsXmgHTegDaAhHQIxGPCXQdCF1fZQoaAZHQGLyrWqcVgxoB03oA2gIR0CMX0pfhMrVdX2UKGgGR0BwuFrIo3JgaAdNegJoCEdAjHJQtSQ5m3V9lChoBkdAZOFpnpSrHWgHTegDaAhHQIx+27lJYkp1fZQoaAZHQHDNniiqQzVoB02jAWgIR0CMh6BIWgvldX2UKGgGR0Bw5ub3Gn4xaAdNgwJoCEdAjIjUoBq9G3V9lChoBkdAb0j9deIEbGgHTWMDaAhHQIyLCi/O+qR1fZQoaAZHQGV5pyIYWLxoB03oA2gIR0CMjTuqFRHgdX2UKGgGR0BvO0C1Z1V6aAdNSANoCEdAjJF9YfW+XnV9lChoBkdAXwU78vVVgmgHTegDaAhHQIySBL26ClJ1fZQoaAZHQGhwYRNATqVoB03oA2gIR0CMlRRCx/utdX2UKGgGR0Bkbo2hqTKUaAdN6ANoCEdAjJe+IMz/InV9lChoBkdAZ/2J+DvmYGgHTegDaAhHQIyZQOz6ab51fZQoaAZHQGaI9rGipNtoB03oA2gIR0CMmuJ3PiT/dX2UKGgGR0BliYrWiDdyaAdN6ANoCEdAjKI0dBBzFXV9lChoBkdAZhq6ZH/cWWgHTegDaAhHQIynPF1jiGZ1fZQoaAZHQGUNE4WDYiBoB03oA2gIR0CMq4ROk+HKdX2UKGgGR0BnmpMtbs4UaAdN6ANoCEdAjLjgeii7CnV9lChoBkdAcOBY/mknC2gHTYABaAhHQIy8OQyRB/t1fZQoaAZHQHA4Tqnm7rdoB025AWgIR0CM2L1HOKO1dX2UKGgGR0Bwd4YQ8OkMaAdNBAFoCEdAjNpk9dNWVHV9lChoBkdAY/URxtHhCWgHTegDaAhHQIzi5egL7XR1fZQoaAZHQG5QvH1e0HBoB00aA2gIR0CM5QGRFI/adX2UKGgGR0BlrATGo73gaAdN6ANoCEdAjPGTRplBhXV9lChoBkdAb7EveP7vX2gHTYUDaAhHQIz0IOrhisp1fZQoaAZHQG+5ZnlGPPtoB02wAWgIR0CM/A8cuJ1rdX2UKGgGR0Blv/fGdZq3aAdN6ANoCEdAjPwZv99+gHV9lChoBkdAY17S619fC2gHTegDaAhHQIz/qvovBad1fZQoaAZHQHDnTQ/oq1BoB02JA2gIR0CNAlcKPXCkdX2UKGgGR0Bl7HZAY51eaAdN6ANoCEdAjQLyQPqcE3V9lChoBkdAaXV8LKFIu2gHTegDaAhHQI0DVbiZOSJ1fZQoaAZHQG/jRY7q6e5oB008AmgIR0CNBaJP69CedX2UKGgGR0Bmx6QeV9ncaAdN6ANoCEdAjQZhcAzYVnV9lChoBkdAb2zd1uBMBmgHTWQBaAhHQI0Gd0Rvm5l1fZQoaAZHQGMRiPyTY/VoB03oA2gIR0CNFp7UG3WndX2UKGgGR0By96IznA6/aAdNrQFoCEdAjRhTshPj43V9lChoBkdAaLB3Roh6jWgHTegDaAhHQI0b2dqcmSh1fZQoaAZHQEwwd1+y7f5oB0u4aAhHQI0tKVD8cdZ1fZQoaAZHQHEgfwqiGnJoB02AAmgIR0CNLk7yQPqcdX2UKGgGR0BgQytq59VnaAdN6ANoCEdAjU9yZjQRgHV9lChoBkdAYzp0FKTSs2gHTegDaAhHQI1RLB/I8yN1fZQoaAZHQG0ucOTaCcxoB019AmgIR0CNVG6iCaqkdX2UKGgGR0Bvy+MOwxFiaAdNfQJoCEdAjVepo0ygw3V9lChoBkdAZIxiy6cy32gHTegDaAhHQI1aZx1gYxd1fZQoaAZHQEXqqtozvZ1oB0vpaAhHQI1bLAgxJul1fZQoaAZHQG7d45cTrVxoB00CA2gIR0CNXDnV5KODdX2UKGgGR0BvynLNfPX1aAdNFwNoCEdAjWB1rqMWGnV9lChoBkdAcZ47ngYP5GgHTXoDaAhHQI1n2kxh2GJ1fZQoaAZHQGIwEEC/47BoB03oA2gIR0CNasHZ9NN8dX2UKGgGR0BiSiY9gWrPaAdN6ANoCEdAjWrFGPPszHV9lChoBkdAbl3rJKaodmgHTakDaAhHQI1u845tFa11fZQoaAZHQGyQyeqaPS5oB03BA2gIR0CNcNcBU70WdX2UKGgGR0BugDpeNT99aAdNyAFoCEdAjXQu5J9RaXV9lChoBkdAcCRNHH3lCGgHTcUBaAhHQI2AY+GGmDV1fZQoaAZHQGYmHGbTc7BoB03oA2gIR0CNhNrtVrAQdX2UKGgGR0By0N5a/yoXaAdNAgNoCEdAjYXArpaA4HV9lChoBkdAZl3ZpSJj2GgHTegDaAhHQI2GSSvC/Gl1fZQoaAZHQHBmubAk9lpoB027AmgIR0CNkD74SHuadWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd5c5dd399aabd107c732efd5cc5b891bf03bb618996cae394aa770f3607baa6
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5662b3693bb8486097e9a22552c391d34a3c49e5cc555842813c394c7c4f8f06
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.11.11
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.5.1+cu124
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.1.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.11.11
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.1.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5f3403ec400498cd8bf3214bc8c1a4e474bd89363979f7c3e2f86c023a4d82e
|
3 |
+
size 175377
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 255.77773523420115, "std_reward": 21.113314778920287, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-14T19:54:23.251373"}
|